Math, asked by shantanu4280, 1 year ago

derivative of secx with respect to tanx is?

Answers

Answered by MaheswariS
12

Answer:

\displaystyle\bf\frac{d(sec\;x)}{d(tan\;x)}=sin\;x

Step-by-step explanation:

Let\;\;u=sec\;x\;\&\;\;v=tan\;x

u=sec\;x

\frac{du}{dx}=sec\;x\;tan\;x

and

v=tan\;x

\frac{dv}{dx}=sec^2\;x

Now

\displaystyle\frac{d(sec\;x)}{d(tan\;x)}

\displaystyle\frac{du}{dv}=\frac{\frac{du}{dx}}{\frac{dv}{dx}}

\displaystyle\frac{dy}{dx}=\frac{sec\;x\;tan\;x}{sec^2\;x}

\displaystyle\frac{dy}{dx}=\frac{tan\;x}{sec\;x}

\displaystyle\frac{dy}{dx}=\frac{\frac{sin\;x}{cos\;x}}{\frac{1}{cos\;x}}

\implies\displaystyle\boxed{\bf\frac{d(sec\;x)}{d(tan\;x)}=sin\;x}

Answered by chandruj
0

Answer:

tanx. secx

Step-by-step explanation:

secx=1/cosx

formula =f(x) /g(x) =g(x) d/dx.f(x) -f(x) d/dx.g(x)

___________________

(g(x)) ^2

=cosx.d/dx.(1)-1d/dx.cosx

_________________

(cosx)^2

=cosx(0)-1.(-sinx)

___________

: sinx/cosx=tanx cos^2x

=sinx.1

____

cos^2x

:1/cosx= secx =sinx/cosx ×1/cosx

=tanx.secx

hence, proved

Attachments:
Similar questions