Math, asked by garvagarwal4099, 7 months ago

Derivative of sin(ax+b)cos(cx+d) with respect to x is

Answers

Answered by Asterinn
2

 \sf \implies  \dfrac{d[sin \: (ax + b) \: cos(cx + d)]}{dx}

Now we will use product rule :-

 \underline{ \boxed{  \large\sf\dfrac{d(uv)}{dx}  = u \dfrac{dv}{dx}  + v  \dfrac{du}{dx}}}

 \sf \implies  sin \: (ax + b) \dfrac{d[\: cos(cx + d)]}{dx} + cos(cx + d) \dfrac{d[sin \: (ax + b)]}{dx}

We know that :-

\underline{ \boxed{  \large\sf\dfrac{d(cos \: t)}{dt}  =  - sin \: t}}

\underline{ \boxed{  \large\sf\dfrac{d(sin \: t)}{dt}  =  cos \: t }}

\underline{ \boxed{  \large\sf\dfrac{d( {t}^{m} )}{dt}  =  m \:  {t}^{m - 1} }}

 \sf \implies   - sin \: (ax + b) sin(cx + d)(c + 0)+ cos(cx + d) cos(ax + b)(a + 0)

\sf \implies   - c \: sin \: (ax + b) sin(cx + d) +a \:  cos(cx + d) cos(ax + b)

Answer :

\sf   \dfrac{d[sin \: (ax + b) \: cos(cx + d)]}{dx}  =  - c \: sin \: (ax + b) sin(cx + d) +a \:  cos(cx + d) cos(ax + b)

__________________

Learn more:-

d(x^n)/dx = n x^(n-1)

d(log x)/dx = 1/x

d(e^x)/dx = e^x

d(sinx)/dx = cosx

d(cos x)/dx = -sin x

d(cosec x)/dx = -cot x cosec x

d(tan x)/dx = sec²x

d(sec x)/dx = secx tanx

d(cot x)/dx = - cosec² x

Similar questions