Math, asked by abin124, 11 months ago

derivative of sin4x by using first principle method ​

Answers

Answered by Swarup1998
2

First Principle of Derivative:

If f(x) be any function of x, then its derivative is given by

\displaystyle \frac{d}{dx}\{f(x)\}=f'(x)=\lim_{h\to 0}\frac{f(x+h)-f(x)}{h}

Step-by-step explanation:

Let f(x)=sin4x

Then f(x+h)-f(x)

=sin(4x+4h)-sin4x

=2\:cos(\frac{4x+4h+4x}{2})\:sin(\frac{4x+4h-4x}{2})

=2\:cos(4x+2h)\:sin2h

Now \displaystyle \lim_{h\to 0}\frac{f(x+h)-f(x)}{h}

\displaystyle =4\:\lim_{h\to 0}\frac{2\:cos(4x+2h)\:sin2h}{h}

\displaystyle =4\:\lim_{h\to 0}cos(4x+2h)\:\lim_{h\to 0}\frac{sin2h}{2h}

\displaystyle =4\:cos4x\:\times 1,\quad \because \lim_{h\to 0}\frac{sinh}{h}=1

=4\:cos4x

Thus \frac{d}{dx}(sin4x)=4\:cos4x

Answer:

The required derivative is 4\:cos4x.

Similar questions