Math, asked by pratheeksha47, 1 year ago

Derivative of √ sinx​

Answers

Answered by Microsoftdev
1

Answer:

Answer:

d

d

x

sin

x

=

cos

x

2

sin

x

Explanation:

Using the limit definition of the derivative we have:

f

'

(

x

)

=

lim

h

0

 

f

(

x

+

h

)

f

(

x

)

h

So for the given function, where  

f

(

x

)

=

sin

x

, we have:

f

'

(

x

)

=

lim

h

0

 

sin

(

x

+

h

)

sin

x

h

 

 

 

 

 

 

 

 

 

=

lim

h

0

 

sin

(

x

+

h

)

sin

x

h

sin

(

x

+

h

)

+

sin

x

sin

(

x

+

h

)

+

sin

x

 

 

 

 

 

 

 

 

 

=

lim

h

0

 

sin

(

x

+

h

)

sin

x

h

(

sin

(

x

+

h

)

+

sin

x

)

Then we can use the trigonometric identity:

sin

(

A

+

B

)

sin

A

cos

B

+

cos

A

sin

B

Giving us:

f

'

(

x

)

=

lim

h

0

 

sin

x

cos

h

+

cos

x

sin

h

sin

x

h

(

sin

(

x

+

h

)

+

sin

x

)

 

 

 

 

 

 

 

 

 

=

lim

h

0

 

sin

x

(

cos

h

1

)

+

cos

x

sin

h

h

(

sin

(

x

+

h

)

+

sin

x

)

 

 

 

 

 

 

 

 

 

=

lim

h

0

 

sin

x

(

cos

h

1

)

h

(

sin

(

x

+

h

)

+

sin

x

)

+

cos

x

sin

h

h

(

sin

(

x

+

h

)

+

sin

x

)

 

 

 

 

 

 

 

 

 

=

lim

h

0

 

cos

h

1

h

sin

x

sin

(

x

+

h

)

+

sin

x

+

sin

h

h

cos

x

sin

(

x

+

h

)

+

sin

x

Then we use two very standard calculus limits:

lim

θ

0

 

sin

θ

θ

=

1

, and  

lim

θ

0

 

cos

θ

1

θ

=

0

, and #

And we can now evaluate the limits:

f

'

(

x

)

=

0

×

sin

x

sin

(

x

)

+

sin

x

+

1

×

cos

x

sin

(

x

)

+

sin

x

 

 

 

 

 

 

 

 

 

=

cos

x

2

sin

(

x

)

Answered by suru25102007
2

Answer:

1/2√sinx x cosx is the answer

Similar questions