Math, asked by shriupatro1992, 8 months ago

Derivative of tan^-1(1+2x)/(1-2x) wrt ✓1+4x​

Answers

Answered by shadowsabers03
3

Let,

\longrightarrow u=\tan^{-1}\left(\dfrac{1+2x}{1-2x}\right)\quad\quad\dots(1)

Substitute,

\longrightarrow v=\sqrt{1+4x}

Thus the derivative of \tan^{-1}\left(\dfrac{1+2x}{1-2x}\right) with respect to \sqrt{1+4x} will be \dfrac{du}{dv}.

\longrightarrow v^2=1+4x

\longrightarrow x=\dfrac{v^2-1}{4}

Then (1) becomes,

\longrightarrow u=\tan^{-1}\left(\dfrac{1+2\cdot\frac{v^2-1}{4}}{1-2\cdot\frac{v^2-1}{4}}\right)

\longrightarrow u=\tan^{-1}\left(\dfrac{1+\frac{v^2-1}{2}}{1-\frac{v^2-1}{2}}\right)

\longrightarrow u=\tan^{-1}\left(\dfrac{2+v^2-1}{2-v^2+1}\right)

\longrightarrow u=\tan^{-1}\left(\dfrac{v^2+1}{3-v^2}\right)\quad\quad\dots(2)

Let,

\longrightarrow w=\dfrac{v^2+1}{3-v^2}\quad\quad\dots(3)

Differentiating wrt v,

\longrightarrow \dfrac{dw}{dv}=\dfrac{d}{dv}\left(\dfrac{v^2+1}{3-v^2}\right)

By quotient rule,

\longrightarrow \dfrac{dw}{dv}=\dfrac{2v(3-v^2)+2v(v^2+1)}{(3-v^2)^2}

\longrightarrow \dfrac{dw}{dv}=\dfrac{2v(3-v^2+v^2+1)}{(3-v^2)^2}

\longrightarrow \dfrac{dw}{dv}=\dfrac{8v}{(3-v^2)^2}\quad\quad\dots(4)

Then (2) becomes,

\longrightarrow u=\tan^{-1}\left(w\right)

Differentiating wrt v,

\longrightarrow \dfrac{du}{dv}=\dfrac{d}{dv}\big(\tan^{-1}\left(w\right)\big)

By chain rule,

\longrightarrow \dfrac{du}{dv}=\dfrac{d}{dw}\big(\tan^{-1}\left(w\right)\big)\cdot\dfrac{dw}{dv}

\longrightarrow \dfrac{du}{dv}=\dfrac{1}{1+w^2}\cdot\dfrac{dw}{dv}

From (3) and (4),

\longrightarrow \dfrac{du}{dv}=\dfrac{1}{1+\left(\dfrac{v^2+1}{3-v^2}\right)^2}\cdot\dfrac{8v}{(3-v^2)^2}

\longrightarrow \dfrac{du}{dv}=\dfrac{(3-v^2)^2}{(v^2+1)^2+(3-v^2)^2}\cdot\dfrac{8v}{(3-v^2)^2}

\longrightarrow \dfrac{du}{dv}=\dfrac{8v}{(v^2+1)^2+(3-v^2)^2}

Undoing substitution v=\sqrt{1+4x}\,,

\longrightarrow \dfrac{du}{dv}=\dfrac{8\sqrt{1+4x}}{(1+4x+1)^2+(3-1-4x)^2}

\longrightarrow \dfrac{du}{dv}=\dfrac{8\sqrt{1+4x}}{(2+4x)^2+(2-4x)^2}

Since (a+b)^2+(a-b)^2=2(a^2+b^2),

\longrightarrow \dfrac{du}{dv}=\dfrac{8\sqrt{1+4x}}{2(4+16x^2)}

\longrightarrow\underline{\underline{\dfrac{du}{dv}=\dfrac{\sqrt{1+4x}}{1+4x^2}}}

This is the answer to the question.

Similar questions