Derivative of tan^-1 ((a+x)/(1-ax)) wrt (4x^3 - 3x)
Answers
Let,
Substitute,
Thus the derivative of
Then (1) becomes,
Let,
Differentiating wrt v,v,
By quotient rule,
Then (2) becomes,
Differentiating wrt v,v,
⠀
⠀
⠀
⠀⠀⠀⠀⠀⠀⠀⠀
◕ ◕ ◕ ◕ ✔☃️
Answer:
⟶u=tan
−1
(
1−2x
1+2x
)…(1)
Substitute,
\longrightarrow v=\sqrt{1+4x}⟶v=
1+4x
Thus the derivative of \tan^{-1}\left(\dfrac{1+2x}{1-2x}\right)tan−1(1−2x1+2x) with \:respect \:to \sqrt{1+4x}1+4x will\: be \dfrac{du}{dv}tan
−1
(
1−2x
1+2x
)tan−1(1−2x1+2x) withrespectto
1+4x
1+4x willbe
dv
du
\longrightarrow v^2=1+4x⟶v
2
=1+4x
\longrightarrow x=\dfrac{v^2-1}{4}⟶x=
4
v
2
−1
Then (1) becomes,
\longrightarrow u=\tan^{-1}\left(\dfrac{1+2\cdot\frac{v^2-1}{4}}{1-2\cdot\frac{v^2-1}{4}}\right)⟶u=tan
−1
(
1−2⋅
4
v
2
−1
1+2⋅
4
v
2
−1
)
\longrightarrow u=\tan^{-1}\left(\dfrac{1+\frac{v^2-1}{2}}{1-\frac{v^2-1}{2}}\right)⟶u=tan
−1
(
1−
2
v
2
−1
1+
2
v
2
−1
)
\longrightarrow u=\tan^{-1}\left(\dfrac{2+v^2-1}{2-v^2+1}\right)⟶u=tan
−1
(
2−v
2
+1
2+v
2
−1
)
\longrightarrow u=\tan^{-1}\left(\dfrac{v^2+1}{3-v^2}\right)\quad\quad\dots(2)⟶u=tan
−1
(
3−v
2
v
2
+1
)…(2)
Let,
\longrightarrow w=\dfrac{v^2+1}{3-v^2}\quad\quad\dots(3)⟶w=
3−v
2
v
2
+1
…(3)
Differentiating wrt v,v,
\longrightarrow \dfrac{dw}{dv}=\dfrac{d}{dv}\left(\dfrac{v^2+1}{3-v^2}\right)⟶
dv
dw
=
dv
d
(
3−v
2
v
2
+1
)
By quotient rule,
\longrightarrow \dfrac{dw}{dv}=\dfrac{2v(3-v^2)+2v(v^2+1)}{(3-v^2)^2}⟶
dv
dw
=
(3−v
2
)
2
2v(3−v
2
)+2v(v
2
+1)
\longrightarrow \dfrac{dw}{dv}=\dfrac{2v(3-v^2+v^2+1)}{(3-v^2)^2}⟶
dv
dw
=
(3−v
2
)
2
2v(3−v
2
+v
2
+1)
\longrightarrow \dfrac{dw}{dv}=\dfrac{8v}{(3-v^2)^2}\quad\quad\dots(4)⟶
dv
dw
=
(3−v
2
)
2
8v
…(4)
Then (2) becomes,
\longrightarrow u=\tan^{-1}\left(w\right)⟶u=tan
−1
(w)
Differentiating wrt v,v,
\longrightarrow \dfrac{du}{dv}=\dfrac{d}{dv}\big(\tan^{-1}\left(w\right)\big)⟶
dv
du
=
dv
d
(tan
−1
(w))