Math, asked by jaswanthisweety5640, 5 months ago

Derivative of √tan^-1 (x/2)

Answers

Answered by aviralkachhal007
2

\huge{\bold{\underline{\underline{Question:-}}}}

Derivative of  {tan}^{-1) \times (\frac{x}{2})

\huge{\bold{\underline{\underline{Solution:-}}}}

\frac{d}{dx}({tan}^{-1}) = \frac{1}{1+{x}^{2}}

Differentiate using the chain rule

Given f(x) = g(h(x)) then

f ' (x) = g ' (h(x)) × h ' (x) Chain rule

 f(x) = {tan}^{-1) \times (\frac{x}{2})

\implies{f'(x)\:=\:\frac{1}{1+{\frac{x}{2}}^{2} \times [tex]\frac{d}{dx} \times ({x \frac{1}{2})

 =\frac{\frac{1}{2}}{1+{\frac{{x}^{2}}{2}} \times \frac{4}{4}

 = \frac{2}{4+{x}^{2}}

Similar questions