Derivative of tan(2x+3) from first principle
Answers
Answered by
15
Answer:
Step-by-step explanation:
I have solved this question here.....
Attachments:
Answered by
3
Given:
The expression tan(2x +3)
To Find:
Derivative of tan(2x+3) from first principle.
Solution:
Using first principle , derivative,
- f'(x) = lim h ->0
- f'(x) = lim h->0{ tan (2x + 2h + 3) - tan(2x +3) }/ h
Applying tan a = sin a / cos a ;
- f'(x) = lim h->0 {sin( 2x + 2h + 3)/cos(2x+2h+3) - sin(2x+3)/cos(2x+3)} / h
- f'(x) = lim h->0 {sin( 2x + 2h + 3)cos(2x+3) - cos(2x+2h+3)sin(2x+3)} /hcos(2x+2h+3)cos(2x+3)
sin A cos B - cos A sin B = sin A - B
- f'(x) = lim h->0 {sin( 2x + 2h + 3 - (2x + 3))} /hcos(2x+2h+3)cos(2x+3)
- f'(x) = lim h->0 sin 2h /hcos(2x+2h+3)cos(2x+3)
We know, lim x->0 sinx/x = 1
Applying the limits
- lim h->0 sin 2h/h = lim h->0 2 x sin 2h/2h = 2
- f'(x) = 2 / cos (2x+3)cos(2x+3)
- f'(x) = 2sec²(2x+3)
Derivative of tan(2x+3) from first principle is 2sec²(2x+3).
Similar questions