Math, asked by qasim786, 1 year ago

derivative of tan inverse y/x with respect to x​

Answers

Answered by MaheswariS
16

Answer:

\bf\frac{\partial{u}}{\partial{x}}=\frac{-y}{x^2+y^2}

Step-by-step explanation:

Let\:u=tan^{-1}\frac{y}{x}

\text{Then,}

\frac{\partial{u}}{\partial{x}}=\frac{1}{1+(\frac{y}{x})^2}\frac{\partial(\frac{y}{x})}{\partial{x}}

\frac{\partial{u}}{\partial{x}}=\frac{1}{1+\frac{y^2}{x^2}}\frac{\partial(yx^{-1})}{\partial{x}}

\frac{\partial{u}}{\partial{x}}=\frac{1}{\frac{x^2+y^2}{x^2}}(-yx^{-2})

\frac{\partial{u}}{\partial{x}}=\frac{x^2}{x^2+y^2}(\frac{-y}{x^2})

\frac{\partial{u}}{\partial{x}}=\frac{1}{x^2+y^2}(-y)

\implies\boxed{\bf\frac{\partial{u}}{\partial{x}}=\frac{-y}{x^2+y^2}}

Similar questions