Math, asked by Fortunegiant, 1 year ago

derivative of tan²x by first principle​

Answers

Answered by madeducators2
2

Given:

tan²x

To find:

We have to find the derivative of tan²x by first principle method

Solution:

From the first principle method f^{'}(x)= \lim_{h \to 0} \frac{f(x+h)-f(x)}{h}

here f(x)= tan²x

Now proceeding further,

f^{'}(x)= \lim_{h \to 0} \frac{tan^{2} (x+h)-tan^{2} x}{h}

f^{'}(x)= \lim_{h \to 0} \frac{[tan(x+h)+tanx][tan(x+h)-tanx]}{h}

since we have the formula, tan(A-B)=\frac{tanA-tanB}{1+tanAtanB}

f^{'}(x)= \lim_{h \to 0} \frac{[tan(x+h)+tanx][tan(x+h-x )(1+tan(x+h)tanx)]}{h}

f^{'}(x)= \lim_{h \to 0} \frac{[tan(x+h)+tanx][1+tan(x+h)tanx]tanh}{h}

We have the formula,\lim_{h \to 0} \frac{tanx}{x} =1 and h=0 so we get,

f^{'}(x)= [tan(x+0)+tanx][1+tan(x+0)tanx]

f^{'}(x)= [2tanx][1+tan^{2} x]         ( ∵ sec^{2}x-tan^{2}x =1 )

f^{'}(x)= [2tanx][sec^{2} x]

f^{'}(x)=2.tanx.sec^{2}x

∴Derivative of tan²x by method of first principle is  2tanx.sec²x

 

Similar questions