derivative of
Answers
Given :
To Find :
Derivative of the given value
Solution :
Let ,
Differentiate with respect to x on both sides ,
- d/dx(u/v) = (vu' - uv') / v²
- u' ➠ du/dx
- v' ➠ dv/dx
Answer:
Given :
\bullet\ \; \sf \dfrac{\sqrt{a^2}-\sqrt{x^2}}{\sqrt{a^2}+\sqrt{x^2}}∙
a
2
+
x
2
a
2
−
x
2
To Find :
Derivative of the given value
Solution :
Let ,
\begin{gathered}\sf y=\dfrac{\sqrt{a^2}-\sqrt{x^2}}{\sqrt{a^2}+\sqrt{x^2}}\\\\\to \sf y=\dfrac{a-x}{a+x}\end{gathered}
y=
a
2
+
x
2
a
2
−
x
2
→y=
a+x
a−x
Differentiate with respect to x on both sides ,
\to \sf \dfrac{dy}{dx}=\dfrac{d}{dx}\bigg(\dfrac{a-x}{a+x}\bigg)→
dx
dy
=
dx
d
(
a+x
a−x
)
d/dx(u/v) = (vu' - uv') / v²
u' ➠ du/dx
v' ➠ dv/dx
\to \sf \dfrac{dy}{dx}=\dfrac{(a+x)\frac{d}{dx}(a-x)-(a-x)\frac{d}{dx}(a+x)}{(a+x)^2}→
dx
dy
=
(a+x)
2
(a+x)
dx
d
(a−x)−(a−x)
dx
d
(a+x)
\to \sf \dfrac{dy}{dx}=\dfrac{(a+x)(-1)-(a-x)(1)}{(a+x)^2}→
dx
dy
=
(a+x)
2
(a+x)(−1)−(a−x)(1)
\to \sf \dfrac{dy}{dx}=\dfrac{-a-x-a+x}{(a+x)^2}→
dx
dy
=
(a+x)
2
−a−x−a+x
\leadsto \sf \pink{\dfrac{dy}{dx}=\dfrac{-2a}{(a+x)^2}}\ \; \bigstar⇝
dx
dy
=
(a+x)
2
−2a
★