Math, asked by gurbeer120, 7 months ago

derivative of
 \sqrt{a {} ^ {2} }  -  \sqrt{x {}^{2} }  \div  \sqrt{a { }^{2} }  +  \sqrt{x {}^{2} }

Answers

Answered by BrainlyIAS
10

Given :

\bullet\ \; \sf \dfrac{\sqrt{a^2}-\sqrt{x^2}}{\sqrt{a^2}+\sqrt{x^2}}

To Find :

Derivative of the given value

Solution :

Let ,

\sf y=\dfrac{\sqrt{a^2}-\sqrt{x^2}}{\sqrt{a^2}+\sqrt{x^2}}\\\\\to \sf y=\dfrac{a-x}{a+x}

Differentiate with respect to x on both sides ,

\to \sf \dfrac{dy}{dx}=\dfrac{d}{dx}\bigg(\dfrac{a-x}{a+x}\bigg)

  • d/dx(u/v) = (vu' - uv') / v²
  • u' ➠ du/dx
  • v' ➠ dv/dx

\to \sf \dfrac{dy}{dx}=\dfrac{(a+x)\frac{d}{dx}(a-x)-(a-x)\frac{d}{dx}(a+x)}{(a+x)^2}

\to \sf \dfrac{dy}{dx}=\dfrac{(a+x)(-1)-(a-x)(1)}{(a+x)^2}

\to \sf \dfrac{dy}{dx}=\dfrac{-a-x-a+x}{(a+x)^2}

\leadsto \sf \pink{\dfrac{dy}{dx}=\dfrac{-2a}{(a+x)^2}}\ \; \bigstar

Answered by Anonymous
6

Answer:

Given :

\bullet\ \; \sf \dfrac{\sqrt{a^2}-\sqrt{x^2}}{\sqrt{a^2}+\sqrt{x^2}}∙

a

2

+

x

2

a

2

x

2

To Find :

Derivative of the given value

Solution :

Let ,

\begin{gathered}\sf y=\dfrac{\sqrt{a^2}-\sqrt{x^2}}{\sqrt{a^2}+\sqrt{x^2}}\\\\\to \sf y=\dfrac{a-x}{a+x}\end{gathered}

y=

a

2

+

x

2

a

2

x

2

→y=

a+x

a−x

Differentiate with respect to x on both sides ,

\to \sf \dfrac{dy}{dx}=\dfrac{d}{dx}\bigg(\dfrac{a-x}{a+x}\bigg)→

dx

dy

=

dx

d

(

a+x

a−x

)

d/dx(u/v) = (vu' - uv') / v²

u' ➠ du/dx

v' ➠ dv/dx

\to \sf \dfrac{dy}{dx}=\dfrac{(a+x)\frac{d}{dx}(a-x)-(a-x)\frac{d}{dx}(a+x)}{(a+x)^2}→

dx

dy

=

(a+x)

2

(a+x)

dx

d

(a−x)−(a−x)

dx

d

(a+x)

\to \sf \dfrac{dy}{dx}=\dfrac{(a+x)(-1)-(a-x)(1)}{(a+x)^2}→

dx

dy

=

(a+x)

2

(a+x)(−1)−(a−x)(1)

\to \sf \dfrac{dy}{dx}=\dfrac{-a-x-a+x}{(a+x)^2}→

dx

dy

=

(a+x)

2

−a−x−a+x

\leadsto \sf \pink{\dfrac{dy}{dx}=\dfrac{-2a}{(a+x)^2}}\ \; \bigstar⇝

dx

dy

=

(a+x)

2

−2a

Similar questions