Derivative of the sine and cosine functions. First Derivative. How can I simplify this expression ?
Anonymous:
___k off
Answers
Answered by
6
Answer:
The first derivative equals
sin2x .
Explanation:
This is equivalent to saying
y=(sin(π−x))(sin(π−x))
We can expand
sin(π−x) using sin(A−B)=sinAcosB−sinBcosA
y=(sinπcosx−sinxcosπ)(sinπcosx−sinxcosπ)
y=(0(cosx)−sinx(1))((0)cosx−(−1)sinx)
y=(sinx)(sinx)
y=(sinx)2
Now use the chain rule to differentiate. We let y=u2 and u=sinx
. Then dy
'
Hopefully this helps!
The first derivative equals
sin2x .
Explanation:
This is equivalent to saying
y=(sin(π−x))(sin(π−x))
We can expand
sin(π−x) using sin(A−B)=sinAcosB−sinBcosA
y=(sinπcosx−sinxcosπ)(sinπcosx−sinxcosπ)
y=(0(cosx)−sinx(1))((0)cosx−(−1)sinx)
y=(sinx)(sinx)
y=(sinx)2
Now use the chain rule to differentiate. We let y=u2 and u=sinx
. Then dy
'
Hopefully this helps!
Similar questions