Math, asked by kaleenbhayiya, 9 months ago

derivative of x+1/x by first principle​

Answers

Answered by IamIronMan0
1

Answer:

 \frac{df}{dx}  = lim_{h \to0} \frac{f(x + h) - f(x)}{h}  \\  \\  = lim_{h \to0} \frac{x + h +  \frac{1}{x + h}  - x  - \frac{1}{x} }{h}  \\  \\  = lim_{h \to0} \frac{h(x + h)x -hx - h(x + h) }{hx(x + h)}  \\  \\  = lim_{h \to0} \frac{h {x}^{2} +  {h}^{2}x - hx - hx -  {h}^{2}   }{ {h}^{2}x + h {x}^{2}  }  \\  \\  = lim_{h \to0} \frac{ {h}^{2} (x - 1) + ( {x}^{2} -2x )h }{x {h}^{2} +  {x}^{2}  h}  \\  \\  =  \frac{x - 1}{x}

Similar questions