derivative of {x^2+a^2}^2
Answers
Answered by
1
Answer:
Step-by-step explanation:
finding derivative using first principle
first principle=lim h tends to 0 f(x+h)-f(x)/h
placing f(x)=given thing
lim h tends to 0 (x^2+a^2)^2+h-(x^2+a^2)^2/h
lim h tends to 0 e^ln(x^2+a^2)^2+h-e^ln(x^2+a^2)^2/h
lim h tens to 0 e^ln(x^2+a^2)^2(e^ln(x^2+a^2)^h+(-1)/h
lim h tends to 0 e^ln(x^2+a^2)^2(ln(x^2+a^2)^h/h
lim h tends to 0 (x^2+a^2)^2 *(x^2+a^2)^h -1)/h
(x^2+y^2)^2 lim h tends to 0 (x^2+y^2)h -1/h
(x^2+y^2)^2 *4x
alter method
use derivative using x^n rule and multiplied by derivative of (x^2+a^2)
if we apply we get 4x(x^2+a^2)
Similar questions