Math, asked by apraks, 1 year ago

derivative of {x^2+a^2}^2​

Answers

Answered by nagathegenius
1

Answer:

Step-by-step explanation:

finding derivative using first principle

first principle=lim h tends to 0 f(x+h)-f(x)/h

placing f(x)=given thing

lim h tends to 0 (x^2+a^2)^2+h-(x^2+a^2)^2/h

lim h tends to 0 e^ln(x^2+a^2)^2+h-e^ln(x^2+a^2)^2/h

lim h tens to 0 e^ln(x^2+a^2)^2(e^ln(x^2+a^2)^h+(-1)/h

lim h tends to 0 e^ln(x^2+a^2)^2(ln(x^2+a^2)^h/h

lim h tends to 0  (x^2+a^2)^2 *(x^2+a^2)^h  -1)/h

(x^2+y^2)^2 lim h tends to 0 (x^2+y^2)h  -1/h

(x^2+y^2)^2 *4x

alter method

use derivative using x^n rule and multiplied by derivative of (x^2+a^2)

if we apply we get 4x(x^2+a^2)

Similar questions