Math, asked by Anonymous, 2 months ago

derivative of x²+1/x-1 using quotient rule​

Answers

Answered by CHUPAPIMONYANYO3
0

Answer:

Mathdude35

Step-by-step explanation:

Answered by mathdude500
3

\begin{gathered}\Large{\bold{{\underline{Formula \: Used - }}}}  \end{gathered}

 \boxed{ \bf \: \dfrac{d}{dx} x = 1}

 \boxed{ \bf \: \dfrac{d}{dx} k = 0}

 \boxed{ \bf \: \dfrac{d}{dx}  {x}^{n} =  {nx}^{n - 1}}

 \boxed{ \bf \: \dfrac{d}{dx} \dfrac{u}{v}  = \dfrac{v \: \dfrac{d}{dx}u \:  - u \: \dfrac{d}{dx}v }{ {v}^{2} }}

Let's solve the problem now!!

\rm :\longmapsto\:Let \: y \:  =  \: \dfrac{ {x}^{2} + 1 }{x - 1}

On differentiating both sides, w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx}y = \dfrac{d}{dx}\bigg(\dfrac{ {x}^{2}  + 1}{x - 1}  \bigg)

We know,

\rm :\longmapsto\:\dfrac{d}{dx} \dfrac{u}{v}  = \dfrac{v \: \dfrac{d}{dx}u \:  - u \: \dfrac{d}{dx}v }{ {v}^{2} }

Here,

 \:  \:  \:  \:  \:  \:  \:  \bull \:  \:  \sf \:  \: u =  {x}^{2}  + 1

 \:  \:  \:  \:  \:  \:  \:  \bull \:  \:  \sf \:  \: v = x - 1

So,

On substituting the values, we get

\rm :\longmapsto\:\dfrac{dy}{dx} = \dfrac{(x - 1)\dfrac{d}{dx}( {x}^{2} + 1) - ( {x}^{2} + 1)\dfrac{d}{dx}(x - 1)  }{ {(x - 1)}^{2} }

\rm :\longmapsto\:\dfrac{dy}{dx} =\dfrac{(x - 1)(2x + 0) -  ({x}^{2} + 1)(1  -  0) }{ {(x - 1)}^{2} }

\rm :\longmapsto\:\dfrac{dy}{dx} =\dfrac{ {2x}^{2}  - 2x -  {x}^{2}  - 1}{ {(x - 1)}^{2} }

\rm :\longmapsto\:\dfrac{dy}{dx} =\dfrac{ {x}^{2} - 2x - 1 }{ {(x - 1)}^{2} }

\rm :\longmapsto\:\dfrac{dy}{dx} =\dfrac{ {x}^{2} - 2x + 1 - 1 - 1 }{ {(x - 1)}^{2} }

\rm :\longmapsto\:\dfrac{dy}{dx} =\dfrac{ {(x - 1)}^{2}  - 2}{ {(x - 1)}^{2} }

\rm :\longmapsto\:\dfrac{dy}{dx} =\dfrac{ {(x - 1)}^{2} }{ {(x - 1)}^{2} }  - \dfrac{2}{ {(x - 1)}^{2} }

\bf\implies \: \boxed{ \bf \: \dfrac{dy}{dx}  = 1 - \dfrac{2}{ {(x - 1)}^{2}}}

Additional Information :-

 \boxed{ \bf \: \dfrac{d}{dx} sinx = cosx}

 \boxed{ \bf \: \dfrac{d}{dx} cosx =  - sinx}

 \boxed{ \bf \: \dfrac{d}{dx} tanx =  {sec}^{2}x}

 \boxed{ \bf \: \dfrac{d}{dx} secx \:  = secx \: tanx}

 \boxed{ \bf \: \dfrac{d}{dx} cotx =  -  \: cosec^{2}x}

 \boxed{ \bf \: \dfrac{d}{dx} cosecx =  - cosecx \: cotx}

 \boxed{ \bf \: \dfrac{d}{dx}  {e}^{x}   = {e}^{x}}

 \boxed{ \bf \: \dfrac{d}{dx}  log(x)  = \dfrac{1}{x} }

Similar questions