Math, asked by 2043tanmay, 2 months ago

derivative of (x2/x+1) - (1/1-x)​

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Given that .

\rm :\longmapsto\:y = \dfrac{ {x}^{2} }{x + 1}  - \dfrac{1}{1 - x}

Let reduced this to simplest form first,

\rm :\longmapsto\:y = \dfrac{ {x}^{2} - 1 + 1}{x + 1}  - \dfrac{1}{ - (x - 1)}

\rm :\longmapsto\:y = \dfrac{ {x}^{2} - 1}{x + 1} +  \dfrac{1}{x + 1} +  \dfrac{1}{x - 1}

\rm :\longmapsto\:y = \dfrac{(x + 1)(x - 1)}{x + 1} +  \dfrac{1}{x + 1} +  \dfrac{1}{x - 1}

\rm :\longmapsto\:y = x - 1 +  \dfrac{1}{x + 1} +  \dfrac{1}{x - 1}

\rm :\longmapsto\:y = x - 1 +  {(x + 1)}^{ - 1} +  {(x - 1)}^{ - 1}

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx}y =\dfrac{d}{dx} \bigg( x - 1 +  {(x + 1)}^{ - 1} +  {(x - 1)}^{ - 1} \bigg)

\rm :\longmapsto\:\dfrac{dy}{dx} =\dfrac{d}{dx}x - \dfrac{d}{dx}1+ \dfrac{d}{dx}{(x + 1)}^{ - 1}+\dfrac{d}{dx}{(x - 1)}^{ - 1}

\rm :\longmapsto\:\dfrac{dy}{dx} =1 - 0 -  {(x + 1)}^{ - 1 - 1} - {(x - 1)}^{ - 1 - 1}

\bigg(\sf\because\:\dfrac{d}{dx}x = 1\bigg) \:  \:  \:  \:  \:  \:  \:  \:  \:  \\ \bigg(\sf\because\:\dfrac{d}{dx} {x}^{n} = n {x}^{n - 1} \bigg) \\ \bigg(\sf\because\:\dfrac{d}{dx}x = 1\bigg) \:  \:  \:  \:  \:  \:  \:  \:

\rm :\longmapsto\:\dfrac{dy}{dx} =1 -  {(x + 1)}^{ -2} - {(x - 1)}^{ -2}

\bf\implies \:\dfrac{dy}{dx} = 1 - \dfrac{1}{ {(x + 1)}^{2} }  - \dfrac{1}{ {(x - 1)}^{2} }

Additional information :-

\rm :\longmapsto\:\dfrac{d}{dx} {e}^{x}  =  {e}^{x}

\rm :\longmapsto\:\dfrac{d}{dx} {a}^{x}  =  {a}^{x} log(a)

\rm :\longmapsto\:\dfrac{d}{dx}logx =  \dfrac{1}{x}

Similar questions