Math, asked by shettysarvesh456, 9 months ago

Derivative of y=(5x^x)

Answers

Answered by tejasbenibagde76
1

\fcolorbox{black}{pink}{Answer}

given \: that \\ y = 5 {x}^{x}  \\ let \: u =  {x}^{x} \:  \:  \:  \:  \:  \: ...(1)  \\ taking \: log \: on \: both \: sides \\ we \: get \\ logu = log {x}^{x}  \\ logu = xlogx \\ differentiating \: wrtx \\  \frac{1}{u}  \frac{du}{dx}  = logx + 1 \\  \frac{du}{dx}  = u(1 + logx) \\  \frac{du}{dx}  =  {x}^{x} (1 + logx) \:  \:  \:  \:  \:... from(1) \\  \\ therefore \\ y = 5 {x}^{x} \\ y = 5u  \\ differentiating \: wrtx \\  \frac{dy}{dx} =  5 \frac{du}{dx}    \\  \frac{dy}{dx}  = 5 {x}^{x} (1 + logx)

hope it helps to you☺️

Similar questions