Math, asked by jotsanad, 2 months ago

derivative of y=(cosx)^cotx

Answers

Answered by DmoosaD
0

Answer:

rative

Step-by-step explanation:

Answered by mathdude500
1

\large\underline{\sf{Given- }}

\rm :\longmapsto\:y =  {(cosx)}^{cotx}

\large\underline{\sf{To\:Find - }}

\rm :\longmapsto\:\dfrac{dy}{dx}

\begin{gathered}\large{\bold{{\underline{Formula \: Used - }}}}  \end{gathered}

 \boxed{ \rm \:  log( {x}^{y} ) = y \: logx}

\boxed{ \rm \: \dfrac{d}{dx}cosx =  -  \: sinx}

\boxed{ \rm \: \dfrac{d}{dx}cotx =  -  {cosec}^{2}x}

\boxed{ \rm \: \dfrac{d}{dx}logy =  \frac{1}{y}}

\large\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto\:y =  {(cosx)}^{cotx}

Taking log on both sides, we get

\rm :\longmapsto\:logy =log{(cosx)}^{cotx}

\rm :\longmapsto\:logy  \: = \: cotx \: log{(cosx)}

On differentiating both sides, w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx}logy  \: = \dfrac{d}{dx}\: cotx \: log{(cosx)}

\rm :\longmapsto\:\dfrac{1}{y}\dfrac{dy}{dx} = cotx\dfrac{d}{dx}logcosx \:  +  \: logcosx\dfrac{d}{dx}cotx

\rm :\longmapsto\:\dfrac{1}{y}\dfrac{dy}{dx} = cotx\dfrac{1}{cosx} \dfrac{d}{dx}cosx \:  +  \: logcosx( { - cosec}^{2}x)

\rm :\longmapsto\:\dfrac{1}{y}\dfrac{dy}{dx} = \dfrac{cosx}{sinx} \dfrac{1}{cosx}( - sinx) \:  -  \: logcosx( {cosec}^{2}x)

\rm :\longmapsto\:\dfrac{1}{y}\dfrac{dy}{dx} =  - 1 \:  -  \: logcosx( {cosec}^{2}x)

\rm :\longmapsto\:\dfrac{1}{y}\dfrac{dy}{dx} =  - \bigg (1 \:   +  \: logcosx( {cosec}^{2}x) \bigg)

\rm :\longmapsto\:\dfrac{dy}{dx} =  -y \bigg (1 \:   +  \: logcosx( {cosec}^{2}x) \bigg)

\rm :\longmapsto\:\dfrac{dy}{dx} =  - {(cosx)}^{cotx}  \bigg (1 \:   +  \: logcosx( {cosec}^{2}x) \bigg)

Additional Information :-

\boxed{ \rm \: \dfrac{d}{dx}tanx =  {sec}^{2}x}

\boxed{ \rm \: \dfrac{d}{dx} {e}^{x} =  {e}^{x}}

\boxed{ \rm \: \dfrac{d}{dx} {a}^{x} =  {a}^{x}loga}

\boxed{ \rm \: \dfrac{d}{dx} \sqrt{x} =  \frac{1}{2 \sqrt{x} }}

\boxed{ \rm \: \dfrac{d}{dx}secx = secx \: tanx}

\boxed{ \rm \: \dfrac{d}{dx}cosecx = -  cosecx \: cotx}

Similar questions