Math, asked by prajwallakra05, 17 days ago

derivative of y = ( x +sinx ) / ( x + cos x )
y =  \frac{( x +sinx)}{( x + cos x )}
w.r.t x ​

Answers

Answered by PharohX
2

 \green{ \large \sf \: Given :-}

 \sf \: y =  \frac{x +   \sin(x) }{x +  \cos(x) }  \\

 \green{ \large \sf \: Solution :-}

  : \implies\sf \: y =  \frac{x +   \sin(x) }{x +  \cos(x) }  \\

  : \implies\sf \:  \frac{dy}{dx}  =  \frac{d}{dx}   \bigg(\frac{x + \sin(x) }{x +  \cos(x) }  \bigg) \\

  : \implies\sf \:  \frac{dy}{dx}  =    \frac{ \frac{d}{dx} (x + \sin x)(x + \cos x)   -  \frac{d}{dx} (x + \cos x)(x + \sin x) }{(x +  \cos x ) {}^{2} }  \\

  : \implies\sf \:  \frac{dy}{dx}  =    \frac{ (1 + \cos x)(x + \cos x)   -   (1  - \sin x)(x + \sin x) }{(x +  \cos x ) {}^{2} }  \\

  : \implies\sf \:  \frac{dy}{dx}  =    \frac{ x + \cos x + x \cos x +  { \cos ^{2}x }  -   (x + \sin x - x \sin  x -\cos ^{2}x  ) }{(x +  \cos x ) {}^{2} }  \\

  : \implies\sf \:  \frac{dy}{dx}  =    \frac{ x + \cos x + x \cos x +  { \cos ^{2}x }  -   x  -  \sin x  + x \sin  x   + \sin ^{2}x  ) }{(x +  \cos x ) {}^{2} }  \\

  : \implies\sf \:  \frac{dy}{dx}  =    \frac{  \cos x + x \cos x +  { \cos ^{2}x } +\sin ^{2}x     -  \sin x  + x \sin  x      ) }{(x +  \cos x ) {}^{2} }  \\

 \sf \: Formula \: \:   { \cos ^{2}x } +\sin ^{2}x  = 1

  : \implies\sf \:  \frac{dy}{dx}  =    \frac{  \cos x + x \cos x     -  \sin x  + x \sin  x      ) }{(x +  \cos x ) {}^{2} }  \\

Hope it help.

Similar questions