Physics, asked by GSudheerkumar3440, 1 month ago

derivative y =(1+tan x).(1-sec x)

Answers

Answered by 73azfar
0

Answer:

Hope this helps you in your work.

Attachments:
Answered by SugarCrash
24

\large\bf\underline{\red{Question}}:

  • Derivative y =(1+tan x).(1-sec x)  

\\\large\bf\underline{\red{Solution}}:

We know that,

\\\red\bigstar\;\;\boxed{\bf(UV)' = U'V + V'U}

\\\longmapsto \dfrac{d}{dx}\left[(1+\tan x).(1-\sec x)\right]

\\\dashrightarrow\dfrac{d}{dx}[(1+\tan x)] . (1-\sec x) + \dfrac{d}{dx}[(1-\sec x)].(1+\tan x)  

\\\dashrightarrow \sec^2 x.(1-\sec x) -\sec x \tan x (1+\tan x)

\\\dashrightarrow  \pink{\sec^2x-\sec^3x-\sec x\tan x-\sec x\tan ^2x}

Therefore,

  •  \dfrac{d}{dx}[(1+\tan x).(1-\sec x)] =\sec^2x-\sec^3x-\sec x\tan x-\sec x\tan ^2x  

More to know :

  • (tan x)' = sec²x
  • (sec x)' = tan x sec x
  • (sin x)' = cos x
  • (cos x)' = -sin x
  • Derivative of any constant is zero (0).
Similar questions