Physics, asked by Alvin716, 8 months ago

Derive a mathematical expression for force.........PLS ANSWER FAST I WILL MARK AS BRAINLIEST

Answers

Answered by Anonymous
133

\Large\blue{\underline{\underline{\mathtt{Derivation\:of\:Force}}}}

\textit{Consider a body having an initial momentum}\mathtt{\overrightarrow{p_{1}}}\textit{Let it's momentum change to}\mathtt{\overrightarrow{p_{1}}}\textit{when a net force}\mathtt{\overrightarrow{F}}\textit{acts on it's during a time interval of}\mathtt{\Delta t}

\mathtt{Change\:in\:Momentum = \mathtt{\overrightarrow{p_{2}} - \overrightarrow{p_{1}}}}

\mathrm{\therefore Change\:in\:Momentum\:in\:unit\:time = \dfrac{\overrightarrow{p_{2}} - \overrightarrow{p_{1}}}{\Delta t}}

\mathrm{i.e.,}

\mathrm{Rate\:of\:change\:of\:Momentum= \dfrac{\overrightarrow{p_{2}} - \overrightarrow{p_{1}}}{\Delta t}}

\mathtt{but\:\overrightarrow{p_{2}} = m\overrightarrow{v} (\overrightarrow{v}\:is\:the\:final\:velocity)}

and

\mathtt{but\:\overrightarrow{p_{1}} = m\overrightarrow{u} (\overrightarrow{u}\:is\:the\:initial\:velocity)}

\mathrm{Rate\:of\:change\:of\:Momentum = \dfrac{\mathtt{m\overrightarrow{v} - m\overrightarrow{u}}}{\Delta t}}

\mathrm{\rightarrow Rate\:of\:change\:of\:Momentum = m\bigg(\dfrac{\mathtt{\overrightarrow{v} - \overrightarrow{u}}}{\Delta t}\bigg)}

\mathrm{\rightarrow Rate\:of\:change\:of\:Momentum = \dfrac{\mathtt{m\Delta\overrightarrow{v}}}{\Delta t}}

\textit{Here,}\Delta\overrightarrow{v}\textit{is the change of velocity}.

\textsf{From Newton's second law of motion,}

\mathtt{F \propto \dfrac{m\Delta\overrightarrow{v}}{\Delta t}}

\mathtt{\Rightarrow F \propto ma}

\mathtt{\because \overrightarrow{a} = \dfrac{\Delta v}{\Delta t}}

\mathtt{\Rightarrow F = k\:ma}

\textit{Unit of force is chosen in such a way} \textit{that it produces unit acceleration in a body of unit mass.}

\textit{Then , the constant of proportionality, k = 1}

\green{\boxed{F = ma}}

______________________________________


Anonymous: Awesome Explanation :)
Answered by tejoo
2

Answer:

Consider a body having an initial momentum \mathtt{\overrightarrow{p_{1}}}

p

1

\textit{Let it's momentum change to}Let it’s momentum change to \mathtt{\overrightarrow{p_{1}}}

p

1

\textit{when a net force}when a net force \mathtt{\overrightarrow{F}}

F

\textit{acts on it's during a time interval of}acts on it’s during a time interval of \mathtt{\Delta t}Δt

\mathtt{Change\:in\:Momentum = \mathtt{\overrightarrow{p_{2}} - \overrightarrow{p_{1}}}}ChangeinMomentum=

p

2

p

1

\mathrm{\therefore Change\:in\:Momentum\:in\:unit\:time = \dfrac{\overrightarrow{p_{2}} - \overrightarrow{p_{1}}}{\Delta t}}∴ChangeinMomentuminunittime=

Δt

p

2

p

1

\mathrm{i.e.,}i.e.,

\mathrm{Rate\:of\:change\:of\:Momentum= \dfrac{\overrightarrow{p_{2}} - \overrightarrow{p_{1}}}{\Delta t}}RateofchangeofMomentum=

Δt

p

2

p

1

\mathtt{but\:\overrightarrow{p_{2}} = m\overrightarrow{v} (\overrightarrow{v}\:is\:the\:final\:velocity)}but

p

2

=m

v

(

v

isthefinalvelocity)

andand

\mathtt{but\:\overrightarrow{p_{1}} = m\overrightarrow{u} (\overrightarrow{u}\:is\:the\:initial\:velocity)}but

p

1

=m

u

(

u

istheinitialvelocity)

\mathrm{Rate\:of\:change\:of\:Momentum = \dfrac{\mathtt{m\overrightarrow{v} - m\overrightarrow{u}}}{\Delta t}}RateofchangeofMomentum=

Δt

m

v

−m

u

\mathrm{\rightarrow Rate\:of\:change\:of\:Momentum = m\bigg(\dfrac{\mathtt{\overrightarrow{v} - \overrightarrow{u}}}{\Delta t}\bigg)}→RateofchangeofMomentum=m(

Δt

v

u

)

\mathrm{\rightarrow Rate\:of\:change\:of\:Momentum = \dfrac{\mathtt{m\Delta\overrightarrow{v}}}{\Delta t}}→RateofchangeofMomentum=

Δt

v

\textit{Here,}Here, \Delta\overrightarrow{v}Δ

v

\textit{is the change of velocity}is the change of velocity .

\textsf{From Newton's second law of motion,}From Newton’s second law of motion,

\mathtt{F \propto \dfrac{m\Delta\overrightarrow{v}}{\Delta t}}F∝

Δt

v

\mathtt{\Rightarrow F \propto ma}⇒F∝ma

\mathtt{\because \overrightarrow{a} = \dfrac{\Delta v}{\Delta t}}∵

a

=

Δt

Δv

\mathtt{\Rightarrow F = k\:ma}⇒F=kma

\textit{Unit of force is chosen in such a way}Unit of force is chosen in such a way \textit{that it produces unit acceleration in a body of unit mass.}that it produces unit acceleration in a body of unit mass.

\textit{Then , the constant of proportionality, k = 1}Then , the constant of proportionality, k = 1

\green{\boxed{F = ma}}

F=ma

gajb answer nikhil bhai

Similar questions