Derive a mathematical expression for force.........PLS ANSWER FAST I WILL MARK AS BRAINLIEST
Answers
.
______________________________________
Answer:
Consider a body having an initial momentum \mathtt{\overrightarrow{p_{1}}}
p
1
\textit{Let it's momentum change to}Let it’s momentum change to \mathtt{\overrightarrow{p_{1}}}
p
1
\textit{when a net force}when a net force \mathtt{\overrightarrow{F}}
F
\textit{acts on it's during a time interval of}acts on it’s during a time interval of \mathtt{\Delta t}Δt
\mathtt{Change\:in\:Momentum = \mathtt{\overrightarrow{p_{2}} - \overrightarrow{p_{1}}}}ChangeinMomentum=
p
2
−
p
1
\mathrm{\therefore Change\:in\:Momentum\:in\:unit\:time = \dfrac{\overrightarrow{p_{2}} - \overrightarrow{p_{1}}}{\Delta t}}∴ChangeinMomentuminunittime=
Δt
p
2
−
p
1
\mathrm{i.e.,}i.e.,
\mathrm{Rate\:of\:change\:of\:Momentum= \dfrac{\overrightarrow{p_{2}} - \overrightarrow{p_{1}}}{\Delta t}}RateofchangeofMomentum=
Δt
p
2
−
p
1
\mathtt{but\:\overrightarrow{p_{2}} = m\overrightarrow{v} (\overrightarrow{v}\:is\:the\:final\:velocity)}but
p
2
=m
v
(
v
isthefinalvelocity)
andand
\mathtt{but\:\overrightarrow{p_{1}} = m\overrightarrow{u} (\overrightarrow{u}\:is\:the\:initial\:velocity)}but
p
1
=m
u
(
u
istheinitialvelocity)
\mathrm{Rate\:of\:change\:of\:Momentum = \dfrac{\mathtt{m\overrightarrow{v} - m\overrightarrow{u}}}{\Delta t}}RateofchangeofMomentum=
Δt
m
v
−m
u
\mathrm{\rightarrow Rate\:of\:change\:of\:Momentum = m\bigg(\dfrac{\mathtt{\overrightarrow{v} - \overrightarrow{u}}}{\Delta t}\bigg)}→RateofchangeofMomentum=m(
Δt
v
−
u
)
\mathrm{\rightarrow Rate\:of\:change\:of\:Momentum = \dfrac{\mathtt{m\Delta\overrightarrow{v}}}{\Delta t}}→RateofchangeofMomentum=
Δt
mΔ
v
\textit{Here,}Here, \Delta\overrightarrow{v}Δ
v
\textit{is the change of velocity}is the change of velocity .
\textsf{From Newton's second law of motion,}From Newton’s second law of motion,
\mathtt{F \propto \dfrac{m\Delta\overrightarrow{v}}{\Delta t}}F∝
Δt
mΔ
v
\mathtt{\Rightarrow F \propto ma}⇒F∝ma
\mathtt{\because \overrightarrow{a} = \dfrac{\Delta v}{\Delta t}}∵
a
=
Δt
Δv
\mathtt{\Rightarrow F = k\:ma}⇒F=kma
\textit{Unit of force is chosen in such a way}Unit of force is chosen in such a way \textit{that it produces unit acceleration in a body of unit mass.}that it produces unit acceleration in a body of unit mass.
\textit{Then , the constant of proportionality, k = 1}Then , the constant of proportionality, k = 1
\green{\boxed{F = ma}}
F=ma
gajb answer nikhil bhai