Math, asked by ruchitavaidya1414, 8 months ago

derive an equation of the line passing (x1, y1) and(x2, y2) hance find the equation of the line passing through the point (4, 7) and(-3, 8)​

Answers

Answered by MaheswariS
1

\underline{\textsf{Given:}}

\textsf{Points are (4,7) and (-3,8)}

\underline{\textsf{To find:}}

\textsf{The equation of the line passing through the given points}

\underline{\textsf{Solution:}}

\textsf{Slope of the line joining points}\mathsf{(x_1,y_1)}\,\textsf{and}\,\mathsf{(x_2,y_2)}

\implies\mathsf{m=\dfrac{y_2-y_1}{x_2-x_1}}

\textsf{The equation of line passes through}\,\mathsf{(x_1,y_1)}

\textsf{having slope m is}

\mathsf{y-y_1=m(x-x_1)}

\mathsf{y-y_1=\dfrac{y_2-y_1}{x_2-x_1}(x-x_1)}

\implies\boxed{\mathsf{\dfrac{y-y_1}{y_2-y_1}=\dfrac{x-x_1}{x_2-x_1}}}

\textsf{which is the required equation of the line}

\textsf{The equation of the line joining (4,7) and (-3,8) is}

\mathsf{\dfrac{y-y_1}{y_2-y_1}=\dfrac{x-x_1}{x_2-x_1}}

\mathsf{\dfrac{y-7}{8-7}=\dfrac{x-4}{-3-4}}

\mathsf{\dfrac{y-7}{1}=\dfrac{x-4}{-7}}

\mathsf{-7(y-7)=x-4}

\mathsf{-7y+49=x-4}

\implies\boxed{\mathsf{x+7y-53=0}}

Similar questions