Derive an equation of the trajectory of a projectile and hence show that that the trajectory is a parabola
Answers
Explanation:
In order to derive the equation of trajectory for a projectile particle, we in other words consider the relation between the x and yth co-ordinate.
Now, we know that for;
x = u cos ∅t
x/ u cos ∅ = t _______(1)
Also, y = (u sin ∅)t - 1/2 gt² ______(2)
On substituting the value of (1) in (2) , we get;-
y = (u sin ∅)x/ u cos ∅ - 1 /2 g × x²/ u²cos²∅
y = x tan ∅ - gx² / 2 u²cos²∅
y = ax - bx² (let tan∅= a & g/2u²cos²∅= b)
Clearly, the equation denotes parabolic origins. Hence, the path of trajectory will be parabolic.
Then,
y = x tan ∅ - gx² / 2 u²cos²∅
y = x tan ∅ - gx² / 2 u²cos²∅ × tan ∅/tan ∅
y = x tan ∅ [ 1 - gx/ 2 u²cos²∅ × tan ∅ ]
y = x tan ∅ [ 1 - gx/ 2u² cos²∅ × sin∅/cos∅]
y = x tan ∅ [ 1 - gx/ 2u² cos∅ × sin∅]
y = x tan ∅ [ 1 - x/ R ] (since, g/ 2u²sin∅×cos∅= 1/R from the formula of horizontal range, in case, here given is the inverse of it).
Hence,