derive an expression for electric field at a point on axial equitorial position of electric dipole
Answers
Answered by
1
Consider an electric dipole consisting of two point changes −q−q and +q+q separated by a small distance AB=2aAB=2a with center O and dipole moment P=q(2a)P=q(2a)
Let OP=rOP=r
E1E1= electric intensity at P due to change -q at A.
∴|E1−→|=14π∈0qAP2∴|E1→|=14π∈0qAP2
AP2=OP2+OA2AP2=OP2+OA2
=r2+a2=r2+a2
∴|E1−→|=14π∈0qr2+a2∴|E1→|=14π∈0qr2+a2
E1−→=Pc−→E1→=Pc→
Let ∠PBA=∠PAB=θ∠PBA=∠PAB=θ.
E1E1 has two components E1E1 can θθ along PR∥BAPR∥BAand E1sinθE1sinθ along PE⊥BAPE⊥BA .
If E2E2 is the electric intensity at P, due to change +q at B, then
E2−→=14π∈0qBp2=14π∈0q(r2+a2)E2→=14π∈0qBp2=14π∈0q(r2+a2)
E2−→E2→ is along PD−→−PD→
This has two components, E2E2 is along PR∥BAPR∥BAand E2sinθE2sinθ along PF.
E→=2E1cosθE→=2E1cosθ
=24π∈0.q(r2+q2)=24π∈0.q(r2+q2)cosθcosθ
=24π∈0.q(r2+a2)(OAAD)=24π∈0.q(r2+a2)(OAAD)
=24π∈0.q(r2+q2)ar2+a2−−−−−√=24π∈0.q(r2+q2)ar2+a2
=q×2a4π∈0(r2+a2)3/2=q×2a4π∈0(r2+a2)3/2
But q×2a=|P→|q×2a=|P→|, the dipole moment
∴|E→|=|P→|4π∈0(r2+a2)3/2∴|E→|=|P→|4π∈0(r2+a2)3/2
The direction of E→E→ is along .
PR−→−||BA−→−PR→||BA→ (ie) opposite to P→P→
or E→=−P→4π∈0(r2+a2)3/2E→=−P→4π∈0(r2+a2)3/2
If the dipole is short 2a<<r2a<<r
|E→|=|P→|4π∈0r3|E→|=|P→|4π∈0r3
|E→|α1r3
Similar questions