Physics, asked by Vishnukr2152, 8 months ago

Derive an expression for eletric field at a point on the axial line and equtorial line of an eletric dipole?

Attachments:

Answers

Answered by Anonymous
2

Derivation :- 1

  \rm  \implies\:  \: electric  \: \: field \:  \: on \:  \: the \:  \: axis \:  \: of  \: \: dipole

 \rm(at \: a \: distance \: x \: from \: centre \: of \: dipole)

Figure:- 1 is attached

 \rm \: E _{net} = E _2 - E _1

 \rm \: E _{net} \:  =  \dfrac{kq}{(x - l) {}^{2} }  -  \dfrac{kq}{(x + l) {}^{2} }

 \rm \: E _{net} = kq \bigg( \dfrac{1}{(x - l) {}^{2} }  -  \dfrac{1}{(x + l) {}^{2} }  \bigg)

 \rm \: E _{net} = kq  \: \dfrac{(x + l) {}^{2}  - (x - l) {}^{2} }{(x - l) {}^{2}(x + l) {}^{2}  }

 \rm \: E _{net} = kq \dfrac{( {x}^{2}  +  {l}^{2}  + 2xl -  {x}^{2} -  {l}^{2}   + 2xl) }{( {x}^{2}  -  {l}^{2} ){}^{2}  }

 \rm \: E _{net} =  \dfrac{kq \times 4xl}{( {x}^{2} -  {l}^{2} ) {}^{2}  }  =  \dfrac{2kq(2l)x}{( {x}^{2}  -  {l}^{2}) {}^{2}  }

 \boxed{ \rm \: E _{net} =  \dfrac{2kpx}{( {x}^{2}  -  {l}^{2} ) {}^{2} } }

Derivation:- 2

 \rm \implies \:  \: electric \:  \: field  \: \: on  \: \: the  \: \: equtorial \:   \: line \: of \:  \: dipole

 \rm(at \: a \: distance \: x \: from \: centre \: of \: dipole)

Figure:- 2 is attached

 \rm \:  \to \:  {r}^{2}  =  {x}^{2}  +  {l}^{2}

 \rm \to \:  \cos\theta =  \dfrac{l}{r}

So

 \rm \to \:  \cos\theta =  \dfrac{l}{ \sqrt{ {x}^{2}  +  {l}^{2} } }

By taking component we get

 \rm \: E _{net} = 2E \cos\theta =  \dfrac{2kq}{ {x}^{2} +  {l}^{2}  }  \times  \dfrac{l}{ \sqrt{ {x}^{2}  +  {l}^{2} } }

 \rm \: E _{net} =  \dfrac{2kql}{( {x}^{2}  +  {l}^{2})  {}^{ \frac{3}{2} } }  =  \dfrac{kq(2l)}{( {x}^{2} +  {l}^{2}  ) {}^{ \frac{3}{2} } }

 \boxed{ \rm \: E _{net} =  \dfrac{kp}{( {x}^{2} +  {l}^{2} ) {}^{ \frac{3}{2} }  } }

Attachments:
Similar questions