Physics, asked by kenyatta70, 3 months ago

Derive an expression for energy in Simple Harmonic Motion (S.H.M).

Spam answers will be reported.​

Answers

Answered by BloomingBud
167
  • Kinetic energy is also a periodic function of time, being zero when the displacement is maximum. Also, Kinetic energy is maximum when the particle is at the mean position. (T/2) is the period function of Kinetic energy.
  • At the mean position, the potential energy is zero. At an extreme position, the potential energy is maximum.
  • The total mechanical energy of a harmonic oscillation is independent of displacement or time and it depends on amplitude (i.e. maximum displacement).

The total energy of harmonic oscillation is conserved when there is no frictional force.

Attachments:
Answered by nirman95
49

Expression for Energy in SHM :

KINETIC ENERGY:

v =  \dfrac{dx}{dt}

 \implies \: v =  \dfrac{d \{a \sin( \omega t)  \}}{dt}

 \implies \: v =  a \omega  \cos( \omega t)

 \implies \: v =   \omega  \sqrt{ {a}^{2}  \{1 -  { \sin}^{2}( \omega t) \} }

 \implies \: v =   \omega  \sqrt{ {a}^{2}  -  {x}^{2}  }

Now, KE will be :

KE =  \dfrac{1}{2} m {v}^{2}

  \boxed{\implies \: KE =  \dfrac{1}{2} m { \omega}^{2} ( {a}^{2}  -  {x}^{2} )}

_______________________

Now, Potential Energy :

  • Potential energy stored in the object will be equal to the work done to move the object with particular force.

 \displaystyle \: PE =  \int \: dW

 \implies \displaystyle \: PE =  \int \:f \: dx

 \implies \displaystyle \: PE =  \int \:kx \: dx

 \implies \displaystyle \: PE = \dfrac{1}{2} k {x}^{2}

 \implies \displaystyle \: PE = \dfrac{1}{2} (m { \omega}^{2} ) {x}^{2}

 \boxed{ \implies \displaystyle \: PE = \dfrac{1}{2} m { \omega}^{2}  {x}^{2} }

____________________

Now, total energy will be sum of KE and PE:

TE = KE + PE

 \implies TE =  \dfrac{1}{2}m { \omega}^{2}( {a}^{2} -  {x}^{2}  )   +  \dfrac{1}{2} m { \omega}^{2}  {x}^{2}

 \boxed{ \implies TE =  \dfrac{1}{2}m { \omega}^{2}{a}^{2} }

Hope It Helps.

Similar questions