Physics, asked by karkichhetri20, 1 year ago

Derive an expression for height h through which a liquid of surface tension T which rise in a capillary tube of radius r explain clearly from where the energy comes when the liquid rise against gravity in the capillary tube.

Answers

Answered by smartyjay9
0

Surface tension is the tendency of fluid surfaces to shrink into the minimum surface area possible. Surface tension allows insects (e.g. water striders), usually denser than water, to float and slide on a water surface.

At liquid–air interfaces, surface tension results from the greater attraction of liquid molecules to each other (due to cohesion) than to the molecules in the air (due to adhesion). The net effect is an inward force at its surface that causes the liquid to behave as if its surface were covered with a stretched elastic membrane. Thus, the surface comes under tension from the imbalanced forces, which is probably where the term "surface tension" came from.[1] Because of the relatively high attraction of water molecules to each other through a web of hydrogen bonds, water has a higher surface tension (72.8 millinewtons per meter at 20 °C) than most other liquids. Surface tension is an important factor in the phenomenon of capillarity.

Similar questions