Physics, asked by ombhivare2414, 1 year ago

Derive an expression for the kinetic energy in rolling motion​

Answers

Answered by 9829114649ccr
1

Answer:

For Example cycle or Road

Answered by itZmeURjaan
2

Let M and R be the mass and radius of the body, V is the translation speed, ω is the angular speed and I is the moment of inertia of the body about an axis passing through the centre of mass.

Kinetic energy of rotation,

ER= \frac{1}{2} MV²

Kinetic energy of translation,

Er = \frac{1}{2}Iω²

Thus, the total kinetic energy 'E' of the rolling body is

E = ER + Er

= \frac{1}{2} MV² + \frac{1}{2} Iω²

=\frac{1}{2} MV² + \frac{1}{2} MK²ω² .... (I=MK² and K is the radius of gyration)

= \frac{1}{2} MR²ω² + 1/2 MK²ω² .... (V=Rω)

∴E=\frac{1}{2} Mω²(R²+K²)

∴E=\frac{1}{2} M \frac{V²}{R²} (R²+K²)

E = \frac{1}{2} MV²(1+K²R²)

∴ Hence proved.

\\\\

HOPE IT HELPS

PLEASE MARK ME BRAINLIEST ☺️

Similar questions