Physics, asked by bhuvaneshreigns86, 6 months ago

Derive an expression for the period of oscillation of a torsion pendulum ?

Answers

Answered by tajmohamad7719
5

Answer:

The period of a torsional pendulum T=2π√Iκ T = 2 π I κ can be found if the moment of inertia and torsion constant are known.

Explanation:

please mark my Brainliest

Answered by archanajhaasl
1

Answer:

The time period of the torsional pendulum 2\pi\sqrt{\frac{I}{k}}.

Explanation:

  • A torsional pendulum is a stiff body suspended by a wire with one end fastened rigidly to the ceiling and around which the body can execute horizontal angular oscillations.
  • When the pendulum is at rest, there is no torque acting. The pendulum begins to execute angular SHM when it is given a tiny "twist" and then let free. So,                                        

                                          \tau \propto (-\theta)

                                          \tau =-k\theta   (1)

Where,

τ=torque acting on the pendulum

θ=angle through which the pendulum is rotated

k=torsional constant

                                     \alpha=\frac{\tau}{I}     (2)

α=angular frequency

I=moment of inertia

using equation (1) in equation (2);

                                  \alpha=\frac{-k\theta}{I}      (3)

We know that angular frequency is also given as,

                               \alpha=-\omega^2\theta     (4)

Equating equations (3) and (4) we get;

                            -\omega^2\theta=\frac{-k\theta}{I}

                                \omega=\sqrt{\frac{k}{I}}     (5)

And the time period(T) is given as,

                                T=\frac{2\pi}{\omega}     (6)

Using equation (5) in equation (6) we get;

                              T=2\pi\sqrt{\frac{I}{k}}  

This is the time period of the torsional pendulum.

#SPJ3

Similar questions