Physics, asked by abnish97, 1 year ago

Derive an expression for the ratio of Cp/Cv for a diatomic gas.

Answers

Answered by lidaralbany
13

Answer: The ratio of the \dfrac{C_{p}}{C_{v}} for diatomic gas is \dfrac{C_{p}}{C_{v}}= \dfrac{7}{5}.

Explanation:

Using specific heat,

C_{v} = \dfrac{dQ}{(ndt)}

Using first law of thermodynamics

dQ = dU + dW

We know,

dQ = dU

At constant volume

We know that,

U = fn \dfrac{RT}{2}

On differentiate

\dfrac{dU}{dT} = fn\dfrac{R}{2}

Where, f = degree of freedom

Now, the molar specific heat at constant

C_{v} = \dfrac{dU}{n dT}.....(I)

Now put the value of dU in equation (I)

C_{v} = \dfrac{fR}{2}...(II)

Using mayer's law

C_{p}-C_{v} = R

C_{p} =R+C_{v}

Now, put the value of C_{v}

C_{p} = R+\dfrac{fR}{2}

C_{p} = (\dfrac{f}{2}+1)R...(III)

Now, the ratio of C_{p} and C_{v}

\dfrac{C_{p}}{C_{v}}=\dfrac{(\dfrac{f}{2}+1)R}{\dfrac{fR}{2}}

For diatomic gas f = 5

\dfrac{C_{p}}{C_{v}}= \dfrac{\dfrac{5}{2}+1}{\dfrac{5}{2}}

\dfrac{C_{p}}{C_{v}}= \dfrac{7}{5}

Hence, the ratio of the \dfrac{C_{p}}{C_{v}} for diatomic gas is \dfrac{C_{p}}{C_{v}}= \dfrac{7}{5}.

Answered by mindfulmaisel
3

"Derivation for the ratio \frac { { C }_{ p } }{ { C }_{ v } }

Using specific heat,

{ C }_{ v }\quad =\quad \frac { dQ }{ (ndt) }

Using first law of thermodynamics

dQ\quad =\quad dU+dW

We know,

dQ = dU

At constant volume

We know that,

U\quad =\quad { f }_{ n }\frac { RT }{ 2 }

On differentiate

\frac { dU }{ dT } \quad =\quad { f }_{ n }\frac { R }{ 2 }

Where, f = degree of freedom

Now, the molar specific heat at constant

{ C }_{ v }\quad =\quad \frac { dU }{ ndT }.....(I)

Now put the value of dU in equation (I)

{ C }_{ v }\quad =\quad \frac { fR }{ 2 }...(II)

Using mayer's law

{ C }_{ p }-{ C }_{ v }\quad =\quad R

{ C }_{ p }\quad =\quad R+{ C }_{ v }

Now, put the value of Cv

{ C }_{ p }\quad =\quad \frac { R+fR }{ 2 }

{ C }_{ p }\quad =\quad (\frac { f }{ 2 } +1)R..(III)

Now, the ratio of  and

\frac { { C }_{ p } }{ { C }_{ v } } \quad =\quad \frac { (\frac { f }{ 2 } +1)R }{ \frac { fR }{ 2}}

For diatomic gas f = 5

\frac { { C }_{ p } }{ { C }_{ v } } \quad =\quad \frac { (\frac { 5 }{ 2 } +1) }{ \frac { 5 }{ 2}}

\frac { { C }_{ p } }{ { C }_{ v } } \quad =\quad \frac { 7 }{ 5 }

Hence, the ratio of the Cp/Cv for diatomic gas is \frac { { C }_{ p } }{ { C }_{ v } } \quad =\quad \frac { 7 }{ 5 }"

Similar questions