Math, asked by rajshekharppppp, 1 year ago

Derive an expression for the velocity of an electron revolving round the nucleus in the orbit of hydrogen atom. ​

Answers

Answered by BrainlyPikchu
10

\mathfrak{\huge{\underline{\underline{Answer}}}}

From Bohr postulate, we have,

 \frac{mv}{r}  =  \frac{ {ze}^{2} }{4\pi \: e0 {r}^{2} }  =  >  (1)

z -------> atomic number

m ------> mass of electron

r --------> radius of orbit

mvr =  \frac{nh}{2\pi}  =  > (2)

and

Dividing (1) by (2):

 =  > v = ( \frac{ {ze}^{2} }{4\pi \: e0} ) \frac{2\pi}{n}  =  \frac{ {ze}^{2} }{4\pi \: e0h}

Thus, velocity of electron in nth

permitted \: orbit \: i s \:  {v}^{n}  =  \:  \frac{ze}{4\pi \: e0h}

Similar questions