Physics, asked by gupi39, 1 year ago

derive calculusly S=ut+1/2at^2

Answers

Answered by rakeshmohata
19
Hope u like my process
=====================
=> Let the initial velocity at time t= 0 be u.

=> at time = 0, displacement will also be 0.

=> we know,
 a =  \green{\frac{dv}{dt}  }\:  \:  \: and \:  \: v =  \green{ \frac{ds}{dt} }

Now,
=-=-=-

 =  >   \blue{ \frac{dv}{dt}}  =  \blue{a} \\  \\  =  >  \blue{dv} =  \blue{a.dt} \\  \\ \underline{ \: integrating \:  \: both \:  \: sides \: }   \\  \\ =  >  \int  \blue{dv} =   \blue{a}\int \blue{dt} \\  \\  =  >   \bf \blue{v} =  \blue{at + u} \\  \\  =  >   \blue{\frac{ds}{dt}  }= \blue{ u + at} \\  \\  =  >  \blue{ds} =  \blue{u.dt + a.tdt} \\  \\   \underline{integrating \:  \: both \:  \: sides \:  \: again} \\  \\  =  >  \int \blue{ds} =  \blue  u \int \blue{dt} +  \blue{a} \int \blue{t.dt} \\  \\  =  >  \bf \blue{s} =  \blue{ut + a \frac{ {t}^{2} }{2} }  \\  \\   \boxed{ =  > s =   \orange{ut +  \frac{1}{2}a {t}^{2}  }}

____________________________
Hope this is ur required answer

Proud to help you

rakeshmohata: thanks for the brainliest one
raminder1: hiii
akku1877: Awesome Answer ...:)
rakeshmohata: thanks ji
Answered by iHelper
13
Hello!

\sf v = \dfrac{\sf ds}{\sf dt}

\implies \sf ds = \sf vdt

\implies \int \sf ds = \int \sf vdt

\implies \int \sf ds = \int (\sf u+at) \: \sf dt

\implies \int^{s}_{0} \sf ds = \int^{t}_{0} \sf uat + \int^{t}_{0} \sf atdt

\implies \sf (s-0) = \sf u(t-0) + \sf a(\dfrac{t^{2}}{2}-0)

\implies \boxed{\red{\bf{s = \sf ut + \dfrac{1}{2}at^{2}}}}

Cheers!
Similar questions