Physics, asked by priyagosain24981, 1 year ago

Derive condition for constructive and destructive interference

Answers

Answered by singhankit9708
2

Answer:

constructive and destructive interferance

Attachments:
Answered by ᎪɓhᎥⲊhҽᏦ
10

Answer:

Interference of light is the phenomena of multiple light waves interacting with one another under certain circumstances, causing the combined amplitudes of the waves to either increase or decrease.

Explanation:

Consider two light waves represented by

 \rm y_1 =   a_1 \sin \omega t \: .......(1)

 \rm y_2=   a_2 \sin (\omega t  +  \theta\: ).......(2)

Where y_{1} and y_{2}, and displacements, \alpha_{1} and \alpha_{2} are amplitudes, \omega is the angular frequency and \theta is the phase difference

Accordingto superposition principle the resulant displacement is given by

 \implies \rm \: y = y_{1} + y_2

 \rm  \implies \: y =   a_1 \sin \omega t  + a_2 \sin (\omega t  +  \theta\: )

 \rm  \implies \: y =   a_1 \sin \omega t  + a_2 \sin \omega t   \cos  \theta\:  + a_2  \cos\omega t    \sin  \theta\:

 \star\boxed{ \rm \sin(a + b)  =  \sin a   \cos b + \cos a \sin b }

 \rm  \implies \: y =   a_1 \sin \omega t  + a_2 (\sin \omega t   \cos  \theta\:  +  \cos\omega t    \sin  \theta\:)

 \rm  \implies \: y =   (a_1   + a_2 \cos \theta)  (\sin \omega t  +  \cos\omega t    (\ a_{2}sin  \theta\:)) .....(3)

 \rm Let :    (a_1   + a_2 \cos \theta)  = A \cos \Phi \: .....(4)

 \rm \: and :  \: a_{2}sin  \theta\: \:  = A  \sin\Phi ....(5)

 \rm \: Where \:  A  \: and  \:   \Phi  \: are the  \: constant

Now using equation (3) , we get

 \rm  \implies \: y =  A \cos \Phi    \sin \omega t  +A  \sin  \Phi  \cos\omega t...(6)

This is the equation for resulant wave and A is the resulant amplitude.

Squaring equation (4) and (5) w

 \rm   (a_1   + a_2 \cos \theta)^{2}  = A ^{2}  \cos ^{2}  \Phi

and

 \rm \: a_{2}^{2} sin ^{2}   \theta\: \:  = A ^{2}   \sin ^{2} \Phi ....

Now adding them

 \implies \rm   (a_1   + a_2 \cos \theta)^{2}  + a_{2}^{2}  sin ^{2} \theta = A ^{2}  \cos ^{2}  \Phi  + A ^{2}   \sin ^{2} \Phi  \\

By solving we get,

 \boxed{ \rm \: A = \sqrt{ {a}^{2} _1 +  {a}^{2} _2 + 2{a} _1{a} _2 \cos \theta } }

For constructive interference the intensity is maximum and hense amplitudes is maximum

 \rm \: If \cos\theta = 1

then

  \rm \: A =  {a} _1 +  {a} _2 = maximum

Now

  \rm\cos\theta =  \cos2n\pi

when n = 0,1,2......

  \rm  \theta =  2n\pi

  \rm  \theta = \dfrac{2\pi}{ \lambda} x

Where \lambda is the wavelength and x is the path difference

  \rm   \implies\dfrac{2\pi}{ \lambda} x = 2n\pi

 \underline{ \boxed{\implies \rm x = 2n \dfrac{ \lambda}{2} }}

This is the condition for constructive interference.

Again

For destructive interference the intensity is minimum and hense amplitudes is also minimum.

 \rm \: If \cos\theta =  - 1

then

  \rm \: A =  {a} _1  -   {a} _2 = minmum

Now

  \rm\cos\theta =  \cos(2n + 1)\pi

when n = 0,1,2......

  \rm  \theta = ( 2n + 1)\pi

  \rm   \implies\dfrac{2\pi}{ \lambda} x = (2n + 1)\pi

 \underline{ \boxed{\implies \rm x =( 2n + 1) \dfrac{ \lambda}{2} }}

This is the condition for destructive interference.

Similar questions