Physics, asked by Sanjeetsd5241, 1 year ago

Derive electric potential energy due to an electric dipole

Answers

Answered by scintilla
2
here is your answer hope it helps
Attachments:
Answered by Anonymous
6

Answer:-

 \overrightarrow{E} =  \frac{1}{4\pi\epsilon_0} [\frac{q}{({r-a})^{2}} - \frac{q}{({r+a})^{2}}].\hat{p} \\

 \overrightarrow{E} = \frac{q}{4\pi\epsilon_0}[\frac{({r+a})^{2} -  ({r-a})^{2} }{(r^{2}- {a}^{2} )^{2}}].\hat{p} \\

 \overrightarrow{E}  =  \frac{q}{4\pi\epsilon_0}  =  [\frac{4ra }{(r^{2}- {a}^{2} )^{2}}].\hat{p} \\

 \overrightarrow{E}  =  \frac{1}{4\pi\epsilon_0}   -  \frac{2pr}{(r^{2}- {a}^{2} )^{2}}.\hat{p} \\

Here, [p = q(2a)]

 \overrightarrow{E}  =  \frac{1}{4\pi\epsilon_0}  -  \frac{2p}{r^{3}}.\hat{p}  \\

 \overrightarrow{E}  =  \frac{1}{4\pi\epsilon_0}  -  \frac{2p}{r^{3}} \\

→ [For r >> a]

Hence proved!

Attachments:
Similar questions