Physics, asked by aliyaakrama, 7 months ago

Derive equation electric potential of dipole​

Answers

Answered by HeartHacker
1

Answer:

Therefore, the electric potential due to an electric dipole at a given point is equal to KPcosθr2−a2cos2θ. ... Therefore, V=KPcos(π2)r2−a2cos2(π2). We know cos(π2)=0. Hence, V=KPcos(π2)r2−a2cos2(π2)=KP(0)r2−a2(0)=0.

Answered by priyaannu327
0

Explanation:

Let an electric dipole consist of two equal and opposite point charges –q at A and +q at B ,separated by a small distance AB =2a ,with centre at O.

The dipole moment, p=q×2a

We will calculate potential at any point P, where

OP=r and ∠BOP=θ

Let BP=r

1

and AP=r

2

Draw AC perpendicular PQ and BD perpendicular PO

In ΔAOC cosθ=OC/OA=OC/a

OC=acosθ

Similarly, OD=acosθ

Potential at P due to +q=

4πϵ

0

1

r

2

q

And Potential at P due to −q=

4πϵ

0

1

r

1

q

Net potential at P due to the dipole

V=

4πϵ

0

1

(

r

2

q

r

1

q

)

⟹V=

4πϵ

0

q

(

r

2

1

r

1

1

)

Now, r

1

=AP=CP

=OP+OC

=r+acosθ

And r

2

=BP=DP

=OP–OD

=r−acosθ

V=

4πϵ

0

q

(

r−acosθ

1

r+acosθ

1

)

=

4πϵ

0

q

(

r

2

−a

2

cos

2

θ

2acosθ

)

=

r

2

−a

2

cos

2

θ

pcosθ

(Since p=2aq)

Special cases:-

(i) When the point P lies on the axial line of the dipole, θ=0

cosθ=1V=

r

2

−a

2

p

If a<<r, V=

r

2

p

Thus due to an electric dipole ,potential, V∝

r

2

1

(ii) When the point P lies on the equatorial line of the dipole, θ=90

cosθ=0

i.e electric potential due to an electric dipole is zero at every point on the equatorial line of the dipole.

Similar questions