derive expression for the resultant of two concurrent vector
Answers
Let two concurrent vectors be P and Q. Let the resultant be R.
R=P+Q
Refer to the diagram attached below,
In triangle OCB,
OB²=OC²+BC²
⇒OB²=(OA+AC)²+BC²
cos θ=
AC=AB cos θ
AC=OD cos θ=Q
cos θ=[tex]\frac{BC}{AB}[/tex[
BC=AB sin θ
BC=OD sinθ=Q sin θ
Substitute the values in the resultant:
R²=(P+Q cosθ)²+(Q sin θ)²
⇒R²=P²+Q²cos²θ+2PQ cos θ+ Q² sin²θ
⇒R²=P²+Q²(cos²θ+ sin²θ)+2PQ cos θ= P²+Q²+2PQ cos θ
⇒R=√(P²+Q²+2PQ cos θ)
Let two concurrent vectors be P and Q. Let the resultant be R.
R=P+Q
In triangle OCB,
OB²=OC²+BC²
⇒OB²=(OA+AC)²+BC²
cos θ=\frac{AC}{AB}ABAC
AC=AB cos θ
AC=OD cos θ=Q
cos θ=[tex]\frac{BC}{AB}[/tex[
BC=AB sin θ
BC=OD sinθ=Q sin θ
Substitute the values in the resultant:
R²=(P+Q cosθ)²+(Q sin θ)²
⇒R²=P²+Q²cos²θ+2PQ cos θ+ Q² sin²θ
⇒R²=P²+Q²(cos²θ+ sin²θ)+2PQ cos θ= P²+Q²+2PQ cos θ
⇒R=√(P²+Q²+2PQ cos θ)
Hope this helps u