Physics, asked by seeker07, 5 months ago

Derive first equation of motion v=u + at and second equation of motion s=ut+1/2 at2 using graphical method.

Answers

Answered by prince5132
19

\setlength{\unitlength}{2mm}\begin{picture}(6,4)\linethickness{0.26mm} \put(1,7){\dashbox{0.07}(18,17)} \put(1,1.02){\dashbox{0.07}(18,6)}\put(1,1){\vector(2,0){30}}\put(1,1){\vector(0,0){25}}\qbezier(1,7)(1,7)(19,24)\qbezier(4,7)(6,7)(4,10)\put(5.5,8){$\sf  \theta$}\put(18.5, - 0.8){$\sf C$}\put(19.5,6){$\sf D$}\put(18.5,25){$\sf B$}\put(1.2,22){$\sf E$}\put(1.4,25){$\sf y$}\put( - 0.2,6){$\sf A$}\put( - 0.2, - 0.4){$\sf O$}\put(31.2,  0.5){$\sf x$}\put(22,17){\vector(0,0){8}}\put(22,15){\vector(0, - 1){8}}\put(20,15.5){$\sf (v - u)$}\put(28,9){\vector(0,0){15}}\put(28,6){\vector(0, - 1){5}}\put(27,7){$\sf (V)$}\put( - 7,15){$\textsf{ \textbf{Velocity}}$}\put( 8, - 0.5){$\textsf{\textbf{Time}}$}\end{picture}

 \underline{ \bigstar \:  \textsf{First Equation of Motion .}} \\

Let us consider an object is moving with uniform acceleration along a straight line . Let (u) be the initial velocity at t = 0 . After interval of time (t) , its velocity becomes u.

Let OA = u [ t = 0 ]

Here in the figure we draw AD ⟂ BC , and BE ⟂ OY.

∠BAD = ϴ. [ say ]

Now,

➳ Acceleration = slope of Line AB

➳ a = tan ϴ

➳ a = BD/AD. [ tan ϴ = P/B ]

a = (v - u)/t. [ AD = OC = t ]

or, at = v - u.

or, v = u + at. [ 1st Equation of motion ]

_______________…

 \setlength{\unitlength}{2mm}\begin{picture}(6,4)\linethickness{0.26mm} \put(1,7){\dashbox{0.07}(18,17)} \put(1,1.02){\dashbox{0.07}(18,6)}\put(1,1){\vector(2,0){30}}\put(1,1){\vector(0,0){25}}\qbezier(1,7)(1,7)(19,24)\qbezier(4,7)(6,7)(4,10)\put(5.5,8){$\sf  \theta$}\put(18.5, - 0.8){$\sf C$}\put(19.5,6){$\sf D$}\put(18.5,25){$\sf B$}\put(1.2,22){$\sf E$}\put(1.4,25){$\sf y$}\put( - 0.2,6){$\sf A$}\put( - 0.2, - 0.4){$\sf O$}\put(31.2,  0.5){$\sf x$}\put(22,17){\vector(0,0){8}}\put(22,15){\vector(0, - 1){8}}\put(20,15.5){$\sf (v - u)$}\put(28,9){\vector(0,0){15}}\put(28,6){\vector(0, - 1){5}}\put(27,7){$\sf (V)$}\put( - 7,15){$\textsf{ \textbf{Velocity}}$}\put( 8, - 0.5){$\textsf{\textbf{Time}}$}\end{picture}

 \\  \underline{ \bigstar \:  \textsf{Second Equation of Motion .}}

Let us consider, an object is moving along a straight line with a uniform acceleration (a) at t = 0 , initial velocity (u) . Let s be the distance travelled by the object in time t , from A to b.

➳ s = area enclosed by velocity time graph and time axis.

➳ s = Area of OABC

➳ s = Area of OACD + Area of ∆ ABD.

➳ s = OA × AD + 1/2 × BD × AD

➳ s = OA × OC + 1/2 (BC - CD) × OC. ...Eq(1)

  • OA = u
  • OC = t
  • BD = BC - CD = v - u.

➳ s = u × t + 1/2 (v - u) t

From first equation of motion we have , v - u = at.

➳ s = u × t × 1/2 × at × t

s = ut + 1/2at². [ 2nd equation of motion ]

Answered by AestheticSky
8

\huge \fbox \green{1st\: equation\:of\:motion}

  • initial velocity (u) = OA
  • final velocity (v) = BC
  • acceleration (a) = Slope of the graph

Refer to the attachment for the Graph.

According to the diagram:-

\longrightarrow acceleration = \bf\dfrac{BD}{AD}

\longrightarrow a = \bf \dfrac{BC-CD}{OC} (since, AD = OC)

\longrightarrow a = \sf \dfrac{v-u}{t}

\longrightarrow at = v-u

\longrightarrow \underline{\boxed{\sf v = u+at }}

\huge \fbox \green{2nd\: equation\:of\:motion}

  • velocity = \sf\dfrac{Displacement}{time}
  • Displacement = velocity × time
  • Displacement = average velocity × time

Displacement = \sf\dfrac{initial\: velocity+final\: velocity}{2} × time

Displacement (S) = \sf\dfrac{v+u}{2} × t ... \sf eq_{1}

we know that, v = u+at

So, putting the value of v in \sf eq_{1}

\longrightarrow S = \sf\dfrac{u+at+u}{2} × t

\longrightarrow S = \sf\dfrac{2u+at}{2} × t

\longrightarrow S = \sf\dfrac{2u}{2} + \sf\dfrac{at}{2} × t

\longrightarrow S = \sf ut + \dfrac{at²}{2}

\longrightarrow \underline{\boxed{\sf S = ut+\dfrac{1}{2}at²}}

Additional information:-

3rd equation of motion:-

\longrightarrow \underline{\boxed{\sf v²=u²+2as}}

Attachments:
Similar questions