Derive first law of motion by second law of motion.
Answers
Answer:
Newton's first law states that a body stays at rest if it is at rest and moves with a constant velocity unit if a net force is applied on it. Newton's second law states that the net force applied on the body is equal to the rate of change in its momentum.
F = ma
or F = m(v-u) / t
or Ft = mv - mu
That is, when F = 0, v = u for whatever time, t is taken. This means that the object will continue moving with uniform velocity, u throughout the time, t. If u is zero than v will also be zero, i.e., object will remain at rest.
Explanation:
plz mrk as brainliest and follow me friend
Explanation:Newton's first law states that a body stays at rest if it is at rest and moves with a constant velocity unit if a net force is applied on it. Newton's second law states that the net force applied on the body is equal to the rate of change in its momentum.
Newton's first law states that a body stays at rest if it is at rest and moves with a constant velocity unit if a net force is applied on it. Newton's second law states that the net force applied on the body is equal to the rate of change in its momentum.F = ma
Newton's first law states that a body stays at rest if it is at rest and moves with a constant velocity unit if a net force is applied on it. Newton's second law states that the net force applied on the body is equal to the rate of change in its momentum.F = maor F = m(v-u) / t
Newton's first law states that a body stays at rest if it is at rest and moves with a constant velocity unit if a net force is applied on it. Newton's second law states that the net force applied on the body is equal to the rate of change in its momentum.F = maor F = m(v-u) / tor Ft = mv - mu
Newton's first law states that a body stays at rest if it is at rest and moves with a constant velocity unit if a net force is applied on it. Newton's second law states that the net force applied on the body is equal to the rate of change in its momentum.F = maor F = m(v-u) / tor Ft = mv - muThat is, when F = 0, v = u for whatever time, t is taken. This means that the object will continue moving with uniform velocity, u throughout the time, t. If u is zero than v will also be zero, i.e., object will remain at rest.
Newton's first law states that a body stays at rest if it is at rest and moves with a constant velocity unit if a net force is applied on it. Newton's second law states that the net force applied on the body is equal to the rate of change in its momentum. That is, when F = 0, v = u for whatever time, t is taken.