Derive formula for the nth term of an AP.
Answers
Derivation of Formulas
Let
dd = common difference
a1a1 = first term
a2a2 = second term
a3a3 = third term
...
amam = mth term or any term before anan
...
anan = nth term or last term
d=a2−a1=a3−a2=a4−a3d=a2−a1=a3−a2=a4−a3 and so on.
Derivation for an in terms of a1 and d
a1=a1a1=a1
a2=a1+da2=a1+d
a3=a2+d=(a1+d)+d=a1+2da3=a2+d=(a1+d)+d=a1+2d
a4=a3+d=(a1+2d)+d=a1+3da4=a3+d=(a1+2d)+d=a1+3d
a5=a4+d=(a1+3d)+d=a1+4da5=a4+d=(a1+3d)+d=a1+4d
...
am=a1+(m−1)dam=a1+(m−1)d
...
In similar manner
an=anan=an
an−1=an−dan−1=an−d
an−2=an−1−d=(an−d)−d=an−2dan−2=an−1−d=(an−d)−d=an−2d
an−3=an−2−d=(an−2d)−d=an−3dan−3=an−2−d=(an−2d)−d=an−3d
an−4=an−3−d=(an−3d)−d=an−4dan−4=an−3−d=(an−3d)−d=an−4d
...
am=an−(n−m)dam=an−(n−m)d
...
Derivation for the Sum of Arithmetic Progression, S
S=a1+a2+a3+a4+...+anS=a1+a2+a3+a4+...+an
S=a1+(a1+d)+(a1+2d)+(a1+3d)+...+[a1+(n−1)d]S=a1+(a1+d)+(a1+2d)+(a1+3d)+...+[a1+(n−1)d] → Equation (1)
S=an+an−1+an−2+an−3+...+a1S=an+an−1+an−2+an−3+...+a1
S=an+(an−d)+(an−2d)+(an−3d)+...+[an−(n−1)d]S=an+(an−d)+(an−2d)+(an−3d)+...+[an−(n−1)d] → Equation (2)
Add Equations (1) and (2)
2S=(a1+an)+(a1+an)+(a1+an)+(a1+an)+...+(a1+an)2S=(a1+an)+(a1+an)+(a1+an)+(a1+an)+...+(a1+an)
2S=n(a1+an)2S=n(a1+an)
S=n2(a1+an)S=n2(a1+an)
Substitute an = a1 + (n - 1)d to the above equation, we have
S=n2{a1+[a1+(n−1)d]}S=n2{a1+[a1+(n−1)d]}
where
a = first term
d= common difference