Derive mirror formula in case of concave mirror when a object is beyond center of curvature
Answers
Answer:
https://www.youtube.com/watch?v=59g7UUlvCp0
From Figure, the two right-angled triangles A′B′F and MPF are similar. (For paraxial rays, MP can be considered to be a straight line
perpendicular to CP.) Therefore,
begin mathsize 12px style fraction numerator B apostrophe A apostrophe over denominator P M end fraction space equals space fraction numerator B apostrophe F over denominator F P end fraction space space space space o r space space space space fraction numerator begin display style B apostrophe A apostrophe end style over denominator begin display style B A end style end fraction space equals space fraction numerator begin display style B apostrophe F end style over denominator begin display style F P end style end fraction space left parenthesis space because space P M space equals space A B space right parenthesis end style ......................................(1)
since begin mathsize 12px style angle end styleAPB = begin mathsize 12px style angle end styleA'PB' , the right angled triangles A′B′P and ABP are also similar. Therefore,
begin mathsize 12px style fraction numerator B apostrophe A apostrophe over denominator B A end fraction space equals space fraction numerator B apostrophe P over denominator B P end fraction end style ...........................................(2)
Comparing eqns.(1) and (2), we get
begin mathsize 12px style fraction numerator B apostrophe F over denominator F P end fraction space equals space fraction numerator B apostrophe P space minus space F P over denominator F P end fraction space equals space fraction numerator B apostrophe P over denominator B P end fraction end style .........................................(3)
Equation (3) is a relation involving magnitude of distances. We now apply the sign convention. We note that light travels from the object to
the mirror MPN. Hence this is taken as the positive direction.
To reach the object AB, image A′B′ as well as the focus F from the pole P, we have to travel opposite to the direction of incident light.
Hence, all the three will have negative signs. Thus,
B'P = -v, FP = -f , BP = -u
using these convention in eqn.(3), we get
begin mathsize 12px style fraction numerator negative v space plus f over denominator negative f end fraction space equals space fraction numerator negative v over denominator negative u end fraction space space space space space space space space o r space space space space space space space space space fraction numerator v space minus space f over denominator f end fraction space equals space v over u space space space space space space space space space space o r space space space space space space space space space space 1 over u plus 1 over v space equals space 1 over f end style .............................(4)
Eqn.(4) is known as mirror formula
Explanation: