Physics, asked by sashwatsharma2110, 1 month ago

derive propagation of error in multiplication​

Answers

Answered by Anonymous
1

Answer:

  • The examples use the propagation of errors using average deviations. Usually Δx≪x and Δy≪y so that the last term is much smaller than the other terms and can be neglected. The same rule holds for multiplication, division, or combinations, namely add all the relative errors to get the relative error in the result.

Explanation:

  • please make it a brainliest answer.
Answered by LaRouge
0

Answer:

\LARGE{ \orange\bigstar \; \red {\underline{ \mathcal{Q}\sf{UESTION :}} }}

Two vectors having equal magnitudes A make an angle theta with eahc other. Find the magnitude and direction of the resultant.

\\

\LARGE{ \orange\bigstar \; \green {\underline{ \mathcal{A}\sf{NSWERS :}}}}

\sf{1. \; 2Acos \dfrac{\theta}{2}}

\sf{2. \; \dfrac{\theta}{2}}

\\

\LARGE{ \orange\bigstar \; \blue {\underline{ \mathcal{R}\sf{EQUEST :}}}}

Please explain it step-by-step and please explain the trigonom

etry part in detail and mention the trigonometric identities that you have used in solving.

Similar questions