derive relation F = ma where f,m and a have usual meanings
Answers
Answered by
0
According to the Newton’s 2nd Law of motion, the rate of change of linear momentum of a body is directly proportional to the applied external force and in the direction of force.
It means that the linear momentum will change faster when a bigger force is applied.
Consider a body of mass ‘m’ moving with velocity v.
The linear momentum of a body is given by:
p = mv
now According to Newton’s 2nd Law of Motion:
Force is directly proportional to rate of change of momnetum, that is
F α dp/dt
F = k dp/dt
F = k d(mv)/dt
F = k md(v)/dt
F = k ma
Experimentally k =1
F = k ma ( here the value of k is constant =1 )
hence, f=ma
Which is the required equation of force.
It means that the linear momentum will change faster when a bigger force is applied.
Consider a body of mass ‘m’ moving with velocity v.
The linear momentum of a body is given by:
p = mv
now According to Newton’s 2nd Law of Motion:
Force is directly proportional to rate of change of momnetum, that is
F α dp/dt
F = k dp/dt
F = k d(mv)/dt
F = k md(v)/dt
F = k ma
Experimentally k =1
F = k ma ( here the value of k is constant =1 )
hence, f=ma
Which is the required equation of force.
Answered by
1
we know that
F= ma
F=m(v-u)/t
Similar questions