Derive relationship between Cp and Cv for ideal gas ??
Answers
Answered by
11
Relationship between CP and CV for an Ideal Gas
From the equation q = n C ∆T, we can say:
At constant pressure P, we have qP = n CP∆T
This value is equal to the change in enthalpy, that is, qP = n CP∆T = ∆H
Similarly, at constant volume V, we have qV = n CV∆T
This value is equal to the change internal energy, that is, qV = n CV∆T= ∆U
We know that for one mole (n=1) of ideal gas,
∆H = ∆U + ∆(pV )
= ∆U + ∆(RT )
= ∆U + R∆T
Therefore, ∆H = ∆U + R ∆T
Substituting the values of ∆H and ∆U from above in the former equation,
CP∆T = CV∆T + R ∆T
Or CP = CV + R
Or CP – CV= R
Anonymous:
hope its help you
Answered by
6
What is the realation between CP and CV for an ideal gas?
Answer
We know that,
H = U + PV
by differentiating above equation with respect to temperature at constant pressure we get,
dH/dT = dU/dT + P dV/dT ————(1)
for one mole of gas,
PV = RT
differentiating this , temperature at constant pressure,we get
PdV/dT = R
dH/dT =Cp , dU/dT = Cv and PdV/dT=R hence equation (1) becomes.
Cp = Cv + R
Cp-Cv =R
this relation is known as Meyer’s relation
Hope its help u...
Similar questions