Physics, asked by vaidehi2406vb, 6 months ago

Derive: S= ut +1/2at2 with the help of graphical method.​

Answers

Answered by Blossomfairy
45

To prove :

 \bullet  \: \sf{s =ut +   \dfrac{1}{2}  {at}^{2} }

Prove :

  \sf{ \implies \: s = Area \: of \: trapezium \: OABCD } \\  \\ \sf{ \implies s = Area \: of \: reactangle + Area \: of \: triangle} \\  \\  \implies\sf{s = OD \times CD +  \dfrac{1}{2}  \times AC \times BC} \\  \\   \implies\sf{s = t \times u +  \dfrac{1}{2}  \times t \times (v - u)} \\  \\    \implies\sf{s = ut +  \frac{1}{2} \times t \times at } \:  \:  \:  \:  \:  \sf \red{ \bigg(v - u = at \bigg) }\\  \\   \implies\sf{s = ut =  \dfrac{1}{2} {at}^{2}  }

_______...

There are three equations of motion :

  • v = u + at
  • s = ut + ½ at²
  • v² = u² + 2as

v stands for Final velocity

u stand for Initial velocity

s stands for Distance

a stands for Acceleration

t stands for Time

Attachments:
Answered by pragyaarora2005
1

Answer:

To prove :

\bullet \: \sf{s =ut + \dfrac{1}{2} {at}^{2} }∙s=ut+

2

1

at

2

Prove :

\begin{gathered}\sf{ \implies \: s = area \: of \: trapezium \: oab cd } \\ \\ \sf{ \implies s = Area \: of \: reactangle + Area \: of \: triangle} \\ \\ \implies\sf{s = OD \times CD + \dfrac{1}{2} \times AC \times BC} \\ \\ \implies\sf{s = t \times u + \dfrac{1}{2} \times t \times (v - u)} \\ \\ \implies\sf{s = ut + \frac{1}{2} \times t \times at } \: \: \: \: \: \sf \red{ \bigg(v - u = at \bigg) }\\ \\ \implies\sf{s = ut = \dfrac{1}{2} {at}^{2} }\end{gathered}

⟹s=areaoftrapeziumoabcd

⟹s=Areaofreactangle+Areaoftriangle

⟹s=OD×CD+

2

1

×AC×BC

⟹s=t×u+

2

1

×t×(v−u)

⟹s=ut+

2

1

×t×at(v−u=at)

⟹s=ut=

2

1

at

2

Similar questions