Derive: S= ut +1/2at2 with the help of graphical method.
Answers
To prove :
Prove :
_______...
There are three equations of motion :
- v = u + at
- s = ut + ½ at²
- v² = u² + 2as
• v stands for Final velocity
• u stand for Initial velocity
• s stands for Distance
• a stands for Acceleration
• t stands for Time
Answer:
To prove :
\bullet \: \sf{s =ut + \dfrac{1}{2} {at}^{2} }∙s=ut+
2
1
at
2
Prove :
\begin{gathered}\sf{ \implies \: s = area \: of \: trapezium \: oab cd } \\ \\ \sf{ \implies s = Area \: of \: reactangle + Area \: of \: triangle} \\ \\ \implies\sf{s = OD \times CD + \dfrac{1}{2} \times AC \times BC} \\ \\ \implies\sf{s = t \times u + \dfrac{1}{2} \times t \times (v - u)} \\ \\ \implies\sf{s = ut + \frac{1}{2} \times t \times at } \: \: \: \: \: \sf \red{ \bigg(v - u = at \bigg) }\\ \\ \implies\sf{s = ut = \dfrac{1}{2} {at}^{2} }\end{gathered}
⟹s=areaoftrapeziumoabcd
⟹s=Areaofreactangle+Areaoftriangle
⟹s=OD×CD+
2
1
×AC×BC
⟹s=t×u+
2
1
×t×(v−u)
⟹s=ut+
2
1
×t×at(v−u=at)
⟹s=ut=
2
1
at
2