Physics, asked by zeangel3949, 1 year ago

Derive second equation of motion by calculus method?

Answers

Answered by ShivamKashyap08
40

Answer:

\bullet \; \large{\tt S = ut + \dfrac{1}{2} \; at^2}

To Prove:

  • Second Kinematic Equation.

Explanation:

\rule{300}{1.5}

Velocity:

It is defined as rate of change of Displacement w.r.t time.

S.I units: m/s

Expression:

\qquad \large{\tt v = \dfrac{\Delta s}{\Delta t}}

Talking over a small interval of time,

\longmapsto \large{\tt v = \dfrac{ds}{dt}}

Rearranging,

\longmapsto \large{\tt ds = v.dt}

Taking over a large time.

\longmapsto \large{\tt \displaystyle\int  \tt ds = \displaystyle\int \tt v.dt}

Applying Limits,

\longmapsto \large{\tt \displaystyle\int\limits_{0}^{s} \tt ds = \displaystyle\int\limits_{0}^{t} \tt v.dt}

But from first Kinematic Equation we Know, [v = u + at]

Substituting,

\longmapsto \large{\tt \displaystyle\int\limits_{0}^{s} \tt ds = \displaystyle\int\limits_{0}^{t} \tt (u + at)dt}

\longmapsto \large{\tt \displaystyle\int\limits_{0}^{s} \tt ds = \displaystyle\int\limits_{0}^{t} \tt u.dt + \displaystyle\int\limits_{0}^{t} \tt at.dt}

Simplifying,

\longmapsto \large{\tt \bigg[s \bigg]^s_0 = \bigg[ut \bigg]^t_0 + \bigg[\dfrac{at^2}{2} \bigg]^t_0 }

\longmapsto \large{\tt S - 0 = ut + \dfrac{1}{2} \; at^2}

\longmapsto \large{\underline{\boxed{\red{\tt S = ut + \dfrac{1}{2} \; at^2}}}}

Hence Derived !!

\rule{300}{1.5}

\rule{300}{1.5}

Special Cases:

  1. If Distance is zero i.e. ( S = 0) then equation becomes, u t = - 1/2 a t².
  2. If initial velocity is zero i.e. ( u = 0) then equation becomes, S = 1/2 a t².
  3. If Acceleration is zero i.e. ( a = 0) then equation becomes,S = u t.
  4. If time is zero i.e. ( t = 0) then equation becomes, S = 0.

\rule{300}{1.5}

Answered by mayanksingh1011
0

sut+12at Sqitsjchxtitofkdfjjzglcdiv

Similar questions