Math, asked by athgenius, 1 year ago

derive sin4A formulae

Answers

Answered by talibbeiggcet
16
Sin4A = sin(2A +2A)
= sin2A *Cos 2A + sin2A* cos2A
= 2 Sin2A Cos2A
=2 [( 2sinA. CosA) * (1 - 2sin² A)]
= 4sinA CosA - 4Sin³A CosA

athgenius: how to mark brainlist
Answered by guptasingh4564
4

Therefore, sin4A formula is 4(sinA.cos^{3}A- sin^{3}A.cosA)

Step-by-step explanation:

Given,

Derive sin4A formula.

sin4A

=sin2(2A)

=2sin2A.cos2A  (∵sin2A=2sinA.cosA)

=2(2sinA.cosA)(cos^{2} A-sin^{2} A)

=4sinA.cos^{3}A- 4sin^{3}A.cosA

=4(sinA.cos^{3}A- sin^{3}A.cosA)

sin4A formula is 4(sinA.cos^{3}A- sin^{3}A.cosA)

Similar questions