derive sin4A in terms of SinA
Answers
Answered by
2
Answer:
[√(1 - SIn²A)](4SinA - 8Sin³A)
Step-by-step explanation:
sin 4A =sin2(2A)
=2sin2Acos2A (∵sin2A=2sinAcosA)
=2(2sinAcosA)cos2A
= 4sinAcosAcos2A
= 4SinA√(1 - SIn²A)(1-2Sin²A) (∵Cos2A = 1 - 2Sin²A; CosA = √(1 - SIn²A))
= [√(1 - SIn²A)](4SinA - 8Sin³A)
Similar questions