Physics, asked by Anonymous, 8 months ago

Derive :

 h_{max} = \dfrac{u^{2}}{2g}



Answers

Answered by giriaishik123
3

Answer:

v^2=u^2+2gh

0=u^2+2gh

Gravitational acceleration will be negative because it is against the gravity.

0=u^2+2×-gh

0=u^2-2gh

2gh=u^2

h=u^2/2g. Hence proved.

pls mark as the brainliest

Answered by MissRostedKaju
0

{\huge{\fcolorbox{purple}{pink}{\fcolorbox{yellow}{red}{\bf{\color{white}{ǫᴜᴇsᴛɪᴏɴ}}}}}}

h_{max} = \dfrac{u^{2}}{2g}

{ \huge{\fcolorbox{purple}{pink}{\fcolorbox{yellow}{red}{\bf{\color{white}{ᴀɴsᴡᴇʀ}}}}}}

ux=ucosθax=0

uy=usinθay=−g

atmax.height

Vg=0

⇒0−usinθ=gt

⇒t= \frac{usinθ}{g}  \\  	∴H=ugt−  \frac{1}{2} ayt 2 \\ ⇒H=  \frac{usinθ}{g} .usinθ− \frac{1}{2}  \times g \times  \frac{u²sin²0}{g2}  \\ ∴H=  \frac{usin0}{g} .usin0 \frac{1}{2}  \times g \times  \frac{u²sin²0}{g2}  \\ ∴H=  \frac{u²sin²0}{2g} \: when ball comes to gound t = \frac{du sin 0}{g}  \\ ∴Range = Ux.T + \frac{1}{2} a × T² \\  = U cos 0 =  \frac{2u sin 0}{g}  \\ ∴Range = \frac{u²sin²0}{g}

Similar questions