Math, asked by whitepearl434, 3 months ago

derive the above limit​

Attachments:

Answers

Answered by Anonymous
7

Explanation,

\red\bigstar \tt \: lim_{x \rightarrow \: 1} \bigg( \dfrac{1}{1 - x}  -  \dfrac{3}{1 - x {}^{3} }  \bigg) \\  \\  \\    :  \implies \tt \: \: lim_{x \rightarrow \: 1} \bigg( \dfrac{1 + x + x {}^{2} - 3 }{(1 - x)(1 + x + x {}^{2} )}  \bigg)  \\  \\  \\  {\underline { \tt{Applying  \: L - Hospital  \: rule, }}} \\  \\  \\  :  \implies \tt \: \: lim_{x \rightarrow \: 1}  \bigg( \dfrac{ \dfrac{d}{dx} (1 + x + x {}^{2} - 3) }{ \dfrac{d}{dx} (1 - x)(1 + x + x {}^{2}) }  \bigg) \\  \\  \\  :  \implies \tt \: \: lim_{x \rightarrow \: 1}  \bigg(  \dfrac{1 + 2x}{ - 3x {}^{2} } \bigg) \\  \\  \\  :  \implies \tt \:   \bigg( \frac{1 + 2 \times 1}{-3 \times 1 {}^{2} }  \bigg) \\  \\  \\  :  \implies { \underline{ \tt{ \boxed{ - 1}}}} \:  \green \bigstar

Hence,

 \dag \boxed{\tt \: lim_{x \rightarrow \: 1} \bigg( \dfrac{1}{1 - x}  -  \dfrac{3}{1 - x {}^{3}} \bigg) = -1}

Answered by ItzInnocentPrerna
19

\huge\mathcal\colorbox{orchid}{{\color{black}{★ANSWER★}}}

lim  \: x→1 \:  \:  ( \frac{1}{1 - x}  -  \frac{3}{1 - x³} )

⇒lim \: x→1 \:  \: ( \frac{1 + x +  {x}^{2} - 3 }{(1 - x)(1 + x +  {x}^{2} )} )

Applying L- Hospital Rule,

⇒lim \: x→1 \:  \: ( \frac{ \frac{d}{dx} (1 + x +  {x}^{2} - 3) }{ \frac{d}{dx}(1 - x)(1 + x +  {x}^{2})  } )

⇒lim \: x→1 \:  \: ( \frac{1 + 2x}{ - 3 {x}^{2} } )

⇒( \frac{1 + 2 \times 1}{ - 3 \times 1²} )

⇒ - 1

Hence,

lim \: x→1 \:  \: ( \frac{1}{1 - x}  -  \frac{3}{1 -  {x}^{3} } )= - 1

Similar questions