Physics, asked by mona8634, 1 year ago

derive the differential equation for damped harmonic oscillator?

Answers

Answered by MidA
42
First go for simple harmonic oscillation.

force eqn is,

F = -Kx ........ (1)

(-ve sign due to opposite direction of Force and displacement)

now,

there will be a draging force to oppose the motion and it depends on Velocity....

Fd = -bV ...... (2)

again -ve sign due to opposite direction of Dragging force (Fd) and velocity (V) , and "b" is a constant.

So, net Force in damped Motion,. .

F = -Kx - bV ..... (3)

but we know,
F = m  \times a = m \times  \frac{ {d}^{2} x}{ d{t}^{2} }
v =  \frac{dx}{dt}
so, putting these values in eqn (3)...

m \frac{ {d}^{2}x }{ d{t}^{2} }  =  - kx - b \frac{dx}{dt}
or,
m \frac{ {d}^{2}x }{ d{t}^{2} }    +  kx  +  b \frac{dx}{dt}  = 0
this is the eqn for damped oscillation...


mona8634: what are forced electrical oscillations. formulate the differential equation for the forced electrical. oscillator and calculate the current in the circuit.
MidA: oscillations-electrical-circuits/
MidA: you can search on internet... maths24 dot net
MidA: www dot math24 dot net/oscillations-electrical-circuits/
Answered by KaurSukhvir
0

Answer:

Differential equation for Damped oscillator is  m\frac{d^{2}x}{d^{2}t} + kx +b\frac{dx}{dt} =0

Explanation:

  • As we know the force equation for simple harmonic oscillator is  

             F=-kx                                                             ...........(1)

           where F = restoring force

                       k = force constant

                        x = displacement

         and -ve sign shows that both displacement and restoring force                                 acting in the opposite direction to each other.

  • There must be a dragging force to oppose the motion, which depends upon the velocity.

           Fd=-bV                                                            ............(2)

           Where Fd = dragging force

                        b = constant

                         V = velocity

  •  From eq. (1) and (2), the net force in the damped motion,

             F_{net} =kx-bV                                                       .............(3)

  •  We know that, F=ma

                where  a = acceleration =\frac{d^{2}x}{d^{2}t}

                             V =  \frac{dx}{dy}

  • Put the value of F and V in eq.(3),

         we will get ,

                m\frac{d^{2}x}{d^{2}y} = -kx-b\frac{dx}{dy}

        ∴      m\frac{d^{2}x}{d^{2}y} +kx+b\frac{dx}{dy}=0

    This is the differential equation for the damped oscillator.

Similar questions